End-to-End SAR Deep Learning Imaging Method Based on Sparse Optimization
Synthetic aperture radar (SAR) imaging has developed rapidly in recent years. Although the traditional sparse optimization imaging algorithm has achieved effective results, its shortcomings are slow imaging speed, large number of parameters, and high computational complexity. To solve the above prob...
Guardado en:
Autores principales: | Siyuan Zhao, Jiacheng Ni, Jia Liang, Shichao Xiong, Ying Luo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a6b2f2bb6484f92b69aa8cfa69e13cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
First Results on Wake Detection in SAR Images by Deep Learning
por: Roberto Del Prete, et al.
Publicado: (2021) -
An End-to-End Identification Algorithm for Smearing Star Image
por: Jinliang Han, et al.
Publicado: (2021) -
Long-Term Ship Position Prediction Using Automatic Identification System (AIS) Data and End-to-End Deep Learning
por: Ibadurrahman, et al.
Publicado: (2021) -
End-to-End Protocol for the Detection of SARS-CoV-2 from Built Environments
por: Ceth W. Parker, et al.
Publicado: (2020) -
A Robust InSAR Phase Unwrapping Method via Phase Gradient Estimation Network
por: Liming Pu, et al.
Publicado: (2021)