Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery
Wenhui Pan, Mengyao Qin, Guoguang Zhang, Yueming Long, Wenyi Ruan, Jingtong Pan, Zushuai Wu, Tao Wan, Chuanbin Wu, Yuehong Xu Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Tacrolimus (FK506), an eff...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a6e13411f0443e791b2c18b1040f578 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a6e13411f0443e791b2c18b1040f578 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a6e13411f0443e791b2c18b1040f5782021-12-02T05:40:38ZCombination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery1178-2013https://doaj.org/article/1a6e13411f0443e791b2c18b1040f5782016-08-01T00:00:00Zhttps://www.dovepress.com/combination-of-hydrotropic-nicotinamide-with-nanoparticles-for-enhanci-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Wenhui Pan, Mengyao Qin, Guoguang Zhang, Yueming Long, Wenyi Ruan, Jingtong Pan, Zushuai Wu, Tao Wan, Chuanbin Wu, Yuehong Xu Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Tacrolimus (FK506), an effective immunosuppressant for treating inflammatory skin diseases, hardly penetrates into and through the skin owing to its high hydrophobicity and molecular weight. The aim of this study was to develop a hybrid system based on nicotinamide (NIC) and nanoparticles (NPs) encapsulating FK506, such as FK506–NPs–NIC, for facilitating percutaneous delivery, which exploited virtues of both NIC and NPs to obtain the synergetic effect. Solubility and percutaneous permeation studies were carried out. The results showed that NIC could increase the solubility and permeability of FK506 and that 20% (w/v) NIC presented higher FK506 permeability and was thus chosen as the hydrotropic solution to solubilize FK506 and prepare FK506–NPs–NIC. Hyaluronic acid (HA) was chemically conjugated with cholesterol (Chol) to obtain amphiphilic conjugate of HA–Chol, which self-assembled NPs in 20% NIC solution containing FK506. The particle size, zeta potential, and morphology of NPs were characterized. The encapsulation efficiency and in vitro percutaneous permeation of NPs were evaluated in the presence and absence of NIC. The results demonstrated that hydrotropic solubilizing FK506 was readily encapsulated into NPs with a higher encapsulation efficiency of 79.2%±4.2%, and the combination of NPs with NIC exhibited a significantly synergistic effect on FK506 deposition within the skin (2.39±0.53 µg/cm2) and penetration through the skin (13.38±2.26 µg/cm2). The effect of the combination of NPs with NIC on drug permeation was further visualized by confocal laser scanning microscope through in vivo permeation studies, and the results confirmed that NPs–NIC synergistically enhanced the permeation of the drug into the skin. The cellular uptake performed in HaCaT cells presented a promoting effect of NPs on cellular uptake. These overall results demonstrated that HA–Chol–NPs–NIC can synergistically improve the percutaneous delivery of FK506, and it is a novel potential strategy based on a nano-sized carrier for FK506 to treat skin diseases. Keywords: tacrolimus, nicotinamide, hyaluronic acid, nanoparticles, percutaneous deliveryPan WQin MZhang GLong YRuan WPan JWu ZWan TWu CXu YDove Medical Pressarticletacrolimusnicotinamidehyaluronic acidnanoparticlespercutaneous delivery.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 11, Pp 4037-4050 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
tacrolimus nicotinamide hyaluronic acid nanoparticles percutaneous delivery. Medicine (General) R5-920 |
spellingShingle |
tacrolimus nicotinamide hyaluronic acid nanoparticles percutaneous delivery. Medicine (General) R5-920 Pan W Qin M Zhang G Long Y Ruan W Pan J Wu Z Wan T Wu C Xu Y Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
description |
Wenhui Pan, Mengyao Qin, Guoguang Zhang, Yueming Long, Wenyi Ruan, Jingtong Pan, Zushuai Wu, Tao Wan, Chuanbin Wu, Yuehong Xu Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China Abstract: Tacrolimus (FK506), an effective immunosuppressant for treating inflammatory skin diseases, hardly penetrates into and through the skin owing to its high hydrophobicity and molecular weight. The aim of this study was to develop a hybrid system based on nicotinamide (NIC) and nanoparticles (NPs) encapsulating FK506, such as FK506–NPs–NIC, for facilitating percutaneous delivery, which exploited virtues of both NIC and NPs to obtain the synergetic effect. Solubility and percutaneous permeation studies were carried out. The results showed that NIC could increase the solubility and permeability of FK506 and that 20% (w/v) NIC presented higher FK506 permeability and was thus chosen as the hydrotropic solution to solubilize FK506 and prepare FK506–NPs–NIC. Hyaluronic acid (HA) was chemically conjugated with cholesterol (Chol) to obtain amphiphilic conjugate of HA–Chol, which self-assembled NPs in 20% NIC solution containing FK506. The particle size, zeta potential, and morphology of NPs were characterized. The encapsulation efficiency and in vitro percutaneous permeation of NPs were evaluated in the presence and absence of NIC. The results demonstrated that hydrotropic solubilizing FK506 was readily encapsulated into NPs with a higher encapsulation efficiency of 79.2%±4.2%, and the combination of NPs with NIC exhibited a significantly synergistic effect on FK506 deposition within the skin (2.39±0.53 µg/cm2) and penetration through the skin (13.38±2.26 µg/cm2). The effect of the combination of NPs with NIC on drug permeation was further visualized by confocal laser scanning microscope through in vivo permeation studies, and the results confirmed that NPs–NIC synergistically enhanced the permeation of the drug into the skin. The cellular uptake performed in HaCaT cells presented a promoting effect of NPs on cellular uptake. These overall results demonstrated that HA–Chol–NPs–NIC can synergistically improve the percutaneous delivery of FK506, and it is a novel potential strategy based on a nano-sized carrier for FK506 to treat skin diseases. Keywords: tacrolimus, nicotinamide, hyaluronic acid, nanoparticles, percutaneous delivery |
format |
article |
author |
Pan W Qin M Zhang G Long Y Ruan W Pan J Wu Z Wan T Wu C Xu Y |
author_facet |
Pan W Qin M Zhang G Long Y Ruan W Pan J Wu Z Wan T Wu C Xu Y |
author_sort |
Pan W |
title |
Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
title_short |
Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
title_full |
Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
title_fullStr |
Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
title_full_unstemmed |
Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
title_sort |
combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/1a6e13411f0443e791b2c18b1040f578 |
work_keys_str_mv |
AT panw combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT qinm combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT zhangg combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT longy combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT ruanw combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT panj combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT wuz combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT want combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT wuc combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery AT xuy combinationofhydrotropicnicotinamidewithnanoparticlesforenhancingtacrolimuspercutaneousdelivery |
_version_ |
1718400279268818944 |