Reduced-Reference Stereoscopic Image Quality Assessment Using Gradient Sparse Representation and Structural Degradation
Reduced-reference stereoscopic image quality assessment (RRSIQA) models evaluate stereoscopic image quality degradation with partial information about the “ideal-quality” reference stereopair. On one hand, sparse representation in recent theoretical studies of visual cognition...
Guardado en:
Autores principales: | Jian Ma, Guoming Xu, Xiyu Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a8d0b72c42a418185a34ab5eb79ea4e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust Motor Imagery Classification Using Sparse Representations and Grouping Structures
por: Vangelis P. Oikonomou, et al.
Publicado: (2020) -
ECG-Based Identification of Sudden Cardiac Death through Sparse Representations
por: Josue R. Velázquez-González, et al.
Publicado: (2021) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
por: Peng Xi, et al.
Publicado: (2021) -
Memory Model for Morphological Semantics of Visual Stimuli Using Sparse Distributed Representation
por: Kyuchang Kang, et al.
Publicado: (2021) -
RestrictionDigest: A powerful Perl module for simulating genomic restriction digests
por: Wang,Jinpeng, et al.
Publicado: (2016)