Analysis of bacterial and fungal communities in continuous-cropping ramie (Boehmeria nivea L. Gaud) fields in different areas in China

Abstract Ramie (Boehmeria nivea L. Gaud) suffers from long-term continuous cropping. Here, using Illumina high-throughput sequencing technology, we aimed to identify bacteria and fungi associated with continuous cropping in ramie fields in Yuanjiang, Xianning, Sichuan, and Jiangxi. The rarefaction r...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yanzhou Wang, Xiaomin Xu, Touming Liu, Hongwu Wang, Yan Yang, Xiaorong Chen, Siyuan Zhu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1a935c5bfe0d4275be84a047bfd58c97
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Ramie (Boehmeria nivea L. Gaud) suffers from long-term continuous cropping. Here, using Illumina high-throughput sequencing technology, we aimed to identify bacteria and fungi associated with continuous cropping in ramie fields in Yuanjiang, Xianning, Sichuan, and Jiangxi. The rarefaction results showed that Jiangxi had significantly lower bacterial α-diversity than that of the other areas. Firmicutes, Proteobacteria, and Acidobacteria were the dominant bacterial phyla, and Ascomycota, Basidiomycota, and Zygomycota were the dominant fungal phyla. In Jiangxi, Firmicutes accounted for 79.03% of all valid reads, which could have significant decreased microbial diversity and negative effects of continuous ramie cropping. We used traditional methods to examine soil nutrients. Sichuan had a relatively high pH and available P and K, but low total N; opposite findings were recorded in Jiangxi. The redundancy analysis revealed that the urease activity, PH, available K, and total N significantly correlated with bacterial community abundance, whereas only total N significantly correlated with fungal community abundance (P < 0.01). Overall, the effect of soil environmental factors on the bacterial diversity of continuous ramie cropping was greater than that on fungal diversity. In the future, we will focus on the effect of rhizosphere bacteria to solve the obstacle in continuous ramie cropping.