The Bethe-Slater curve revisited; new insights from electronic structure theory

Abstract The Bethe-Slater (BS) curve describes the relation between the exchange coupling and interatomic distance. Based on a simple argument of orbital overlaps, it successfully predicts the transition from antiferromagnetism to ferromagnetism, when traversing the 3d series. In a previous article...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: R. Cardias, A. Szilva, A. Bergman, I. Di Marco, M. I. Katsnelson, A. I. Lichtenstein, L. Nordström, A. B. Klautau, O. Eriksson, Y. O. Kvashnin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1a9b4efb8d604a0bbd36be741034084e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a9b4efb8d604a0bbd36be741034084e
record_format dspace
spelling oai:doaj.org-article:1a9b4efb8d604a0bbd36be741034084e2021-12-02T11:53:12ZThe Bethe-Slater curve revisited; new insights from electronic structure theory10.1038/s41598-017-04427-92045-2322https://doaj.org/article/1a9b4efb8d604a0bbd36be741034084e2017-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-04427-9https://doaj.org/toc/2045-2322Abstract The Bethe-Slater (BS) curve describes the relation between the exchange coupling and interatomic distance. Based on a simple argument of orbital overlaps, it successfully predicts the transition from antiferromagnetism to ferromagnetism, when traversing the 3d series. In a previous article [Phys. Rev. Lett. 116, 217202 (2016)] we reported that the dominant nearestneighbour (NN) interaction for 3d metals in the bcc structure indeed follows the BS curve, but the trends through the series showed a richer underlying physics than was initially assumed. The orbital decomposition of the inter-site exchange couplings revealed that various orbitals contribute to the exchange interactions in a highly non-trivial and sometimes competitive way. In this communication we perform a deeper analysis by comparing 3d metals in the bcc and fcc structures. We find that there is no coupling between the E g orbitals of one atom and T 2g orbitals of its NNs, for both cubic phases. We demonstrate that these couplings are forbidden by symmetry and formulate a general rule allowing to predict when a similar situation is going to happen. In γ-Fe, as in α-Fe, we find a strong competition in the symmetry-resolved orbital contributions and analyse the differences between the high-spin and low-spin solutions.R. CardiasA. SzilvaA. BergmanI. Di MarcoM. I. KatsnelsonA. I. LichtensteinL. NordströmA. B. KlautauO. ErikssonY. O. KvashninNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
R. Cardias
A. Szilva
A. Bergman
I. Di Marco
M. I. Katsnelson
A. I. Lichtenstein
L. Nordström
A. B. Klautau
O. Eriksson
Y. O. Kvashnin
The Bethe-Slater curve revisited; new insights from electronic structure theory
description Abstract The Bethe-Slater (BS) curve describes the relation between the exchange coupling and interatomic distance. Based on a simple argument of orbital overlaps, it successfully predicts the transition from antiferromagnetism to ferromagnetism, when traversing the 3d series. In a previous article [Phys. Rev. Lett. 116, 217202 (2016)] we reported that the dominant nearestneighbour (NN) interaction for 3d metals in the bcc structure indeed follows the BS curve, but the trends through the series showed a richer underlying physics than was initially assumed. The orbital decomposition of the inter-site exchange couplings revealed that various orbitals contribute to the exchange interactions in a highly non-trivial and sometimes competitive way. In this communication we perform a deeper analysis by comparing 3d metals in the bcc and fcc structures. We find that there is no coupling between the E g orbitals of one atom and T 2g orbitals of its NNs, for both cubic phases. We demonstrate that these couplings are forbidden by symmetry and formulate a general rule allowing to predict when a similar situation is going to happen. In γ-Fe, as in α-Fe, we find a strong competition in the symmetry-resolved orbital contributions and analyse the differences between the high-spin and low-spin solutions.
format article
author R. Cardias
A. Szilva
A. Bergman
I. Di Marco
M. I. Katsnelson
A. I. Lichtenstein
L. Nordström
A. B. Klautau
O. Eriksson
Y. O. Kvashnin
author_facet R. Cardias
A. Szilva
A. Bergman
I. Di Marco
M. I. Katsnelson
A. I. Lichtenstein
L. Nordström
A. B. Klautau
O. Eriksson
Y. O. Kvashnin
author_sort R. Cardias
title The Bethe-Slater curve revisited; new insights from electronic structure theory
title_short The Bethe-Slater curve revisited; new insights from electronic structure theory
title_full The Bethe-Slater curve revisited; new insights from electronic structure theory
title_fullStr The Bethe-Slater curve revisited; new insights from electronic structure theory
title_full_unstemmed The Bethe-Slater curve revisited; new insights from electronic structure theory
title_sort bethe-slater curve revisited; new insights from electronic structure theory
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/1a9b4efb8d604a0bbd36be741034084e
work_keys_str_mv AT rcardias thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT aszilva thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT abergman thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT idimarco thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT mikatsnelson thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT ailichtenstein thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT lnordstrom thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT abklautau thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT oeriksson thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT yokvashnin thebetheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT rcardias betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT aszilva betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT abergman betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT idimarco betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT mikatsnelson betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT ailichtenstein betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT lnordstrom betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT abklautau betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT oeriksson betheslatercurverevisitednewinsightsfromelectronicstructuretheory
AT yokvashnin betheslatercurverevisitednewinsightsfromelectronicstructuretheory
_version_ 1718394852627972096