Transformer-based artificial neural networks for the conversion between chemical notations
Abstract We developed a Transformer-based artificial neural approach to translate between SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. The overall performance level of our model is comparable to the rule-based solutions. We proved that the accuracy and speed of computations as...
Guardado en:
Autores principales: | Lev Krasnov, Ivan Khokhlov, Maxim V. Fedorov, Sergey Sosnin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ab182b42dd9410f8a7644dd9fb5bc4f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Stirling Thermodynamics using Phasor Notation
por: Berchowitz David M.
Publicado: (2021) -
The duality between particle methods and artificial neural networks
por: A. Alexiadis, et al.
Publicado: (2020) -
Performance analysis of free piston Stirling engine based on the phasor notation method
por: Chen Pengfan, et al.
Publicado: (2021) -
Development of an artificial neural network as a tool for predicting the chemical attributes of fresh peach fruits.
por: Mahmoud Abdel-Sattar, et al.
Publicado: (2021) -
Publisher Correction: The duality between particle methods and artificial neural networks
por: A. Alexiadis, et al.
Publicado: (2021)