Fixed point indices and manifolds with collars

This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Daniel Henry Gottlieb, Chen-Farng Benjamin
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2006
Materias:
Acceso en línea:https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1abf566190594fe2bc1055f16ffedbc4
record_format dspace
spelling oai:doaj.org-article:1abf566190594fe2bc1055f16ffedbc42021-12-02T11:30:42ZFixed point indices and manifolds with collars10.1155/FPTA/2006/876571687-18201687-1812https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc42006-05-01T00:00:00Zhttp://dx.doi.org/10.1155/FPTA/2006/87657https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached.Daniel Henry GottliebChen-Farng BenjaminSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2006 (2006)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Daniel Henry Gottlieb
Chen-Farng Benjamin
Fixed point indices and manifolds with collars
description This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached.
format article
author Daniel Henry Gottlieb
Chen-Farng Benjamin
author_facet Daniel Henry Gottlieb
Chen-Farng Benjamin
author_sort Daniel Henry Gottlieb
title Fixed point indices and manifolds with collars
title_short Fixed point indices and manifolds with collars
title_full Fixed point indices and manifolds with collars
title_fullStr Fixed point indices and manifolds with collars
title_full_unstemmed Fixed point indices and manifolds with collars
title_sort fixed point indices and manifolds with collars
publisher SpringerOpen
publishDate 2006
url https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc4
work_keys_str_mv AT danielhenrygottlieb fixedpointindicesandmanifoldswithcollars
AT chenfarngbenjamin fixedpointindicesandmanifoldswithcollars
_version_ 1718395863814897664