Fixed point indices and manifolds with collars
This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached....
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2006
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1abf566190594fe2bc1055f16ffedbc4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1abf566190594fe2bc1055f16ffedbc42021-12-02T11:30:42ZFixed point indices and manifolds with collars10.1155/FPTA/2006/876571687-18201687-1812https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc42006-05-01T00:00:00Zhttp://dx.doi.org/10.1155/FPTA/2006/87657https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached.Daniel Henry GottliebChen-Farng BenjaminSpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2006 (2006) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Daniel Henry Gottlieb Chen-Farng Benjamin Fixed point indices and manifolds with collars |
description |
This paper concerns a formula which relates the Lefschetz number L(f) for a map f:M→M′ to the fixed point index I(f) summed with the fixed point index of a derived map on part of the boundary of ∂M. Here M is a compact manifold and M′ is M with a collar attached. |
format |
article |
author |
Daniel Henry Gottlieb Chen-Farng Benjamin |
author_facet |
Daniel Henry Gottlieb Chen-Farng Benjamin |
author_sort |
Daniel Henry Gottlieb |
title |
Fixed point indices and manifolds with collars |
title_short |
Fixed point indices and manifolds with collars |
title_full |
Fixed point indices and manifolds with collars |
title_fullStr |
Fixed point indices and manifolds with collars |
title_full_unstemmed |
Fixed point indices and manifolds with collars |
title_sort |
fixed point indices and manifolds with collars |
publisher |
SpringerOpen |
publishDate |
2006 |
url |
https://doaj.org/article/1abf566190594fe2bc1055f16ffedbc4 |
work_keys_str_mv |
AT danielhenrygottlieb fixedpointindicesandmanifoldswithcollars AT chenfarngbenjamin fixedpointindicesandmanifoldswithcollars |
_version_ |
1718395863814897664 |