Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning

Abstract Every year cervical cancer affects more than 300,000 people, and on average one woman is diagnosed with cervical cancer every minute. Early diagnosis and classification of cervical lesions greatly boosts up the chance of successful treatments of patients, and automated diagnosis and classif...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ching-Wei Wang, Yi-An Liou, Yi-Jia Lin, Cheng-Chang Chang, Pei-Hsuan Chu, Yu-Ching Lee, Chih-Hung Wang, Tai-Kuang Chao
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1ac7f29941f8436ba33f5bdfe0e9c405
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1ac7f29941f8436ba33f5bdfe0e9c405
record_format dspace
spelling oai:doaj.org-article:1ac7f29941f8436ba33f5bdfe0e9c4052021-12-02T15:08:11ZArtificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning10.1038/s41598-021-95545-y2045-2322https://doaj.org/article/1ac7f29941f8436ba33f5bdfe0e9c4052021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95545-yhttps://doaj.org/toc/2045-2322Abstract Every year cervical cancer affects more than 300,000 people, and on average one woman is diagnosed with cervical cancer every minute. Early diagnosis and classification of cervical lesions greatly boosts up the chance of successful treatments of patients, and automated diagnosis and classification of cervical lesions from Papanicolaou (Pap) smear images have become highly demanded. To the authors’ best knowledge, this is the first study of fully automated cervical lesions analysis on whole slide images (WSIs) of conventional Pap smear samples. The presented deep learning-based cervical lesions diagnosis system is demonstrated to be able to detect high grade squamous intraepithelial lesions (HSILs) or higher (squamous cell carcinoma; SQCC), which usually immediately indicate patients must be referred to colposcopy, but also to rapidly process WSIs in seconds for practical clinical usage. We evaluate this framework at scale on a dataset of 143 whole slide images, and the proposed method achieves a high precision 0.93, recall 0.90, F-measure 0.88, and Jaccard index 0.84, showing that the proposed system is capable of segmenting HSILs or higher (SQCC) with high precision and reaches sensitivity comparable to the referenced standard produced by pathologists. Based on Fisher’s Least Significant Difference (LSD) test (P < 0.0001), the proposed method performs significantly better than the two state-of-the-art benchmark methods (U-Net and SegNet) in precision, F-Measure, Jaccard index. For the run time analysis, the proposed method takes only 210 seconds to process a WSI and is 20 times faster than U-Net and 19 times faster than SegNet, respectively. In summary, the proposed method is demonstrated to be able to both detect HSILs or higher (SQCC), which indicate patients for further treatments, including colposcopy and surgery to remove the lesion, and rapidly processing WSIs in seconds for practical clinical usages.Ching-Wei WangYi-An LiouYi-Jia LinCheng-Chang ChangPei-Hsuan ChuYu-Ching LeeChih-Hung WangTai-Kuang ChaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ching-Wei Wang
Yi-An Liou
Yi-Jia Lin
Cheng-Chang Chang
Pei-Hsuan Chu
Yu-Ching Lee
Chih-Hung Wang
Tai-Kuang Chao
Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
description Abstract Every year cervical cancer affects more than 300,000 people, and on average one woman is diagnosed with cervical cancer every minute. Early diagnosis and classification of cervical lesions greatly boosts up the chance of successful treatments of patients, and automated diagnosis and classification of cervical lesions from Papanicolaou (Pap) smear images have become highly demanded. To the authors’ best knowledge, this is the first study of fully automated cervical lesions analysis on whole slide images (WSIs) of conventional Pap smear samples. The presented deep learning-based cervical lesions diagnosis system is demonstrated to be able to detect high grade squamous intraepithelial lesions (HSILs) or higher (squamous cell carcinoma; SQCC), which usually immediately indicate patients must be referred to colposcopy, but also to rapidly process WSIs in seconds for practical clinical usage. We evaluate this framework at scale on a dataset of 143 whole slide images, and the proposed method achieves a high precision 0.93, recall 0.90, F-measure 0.88, and Jaccard index 0.84, showing that the proposed system is capable of segmenting HSILs or higher (SQCC) with high precision and reaches sensitivity comparable to the referenced standard produced by pathologists. Based on Fisher’s Least Significant Difference (LSD) test (P < 0.0001), the proposed method performs significantly better than the two state-of-the-art benchmark methods (U-Net and SegNet) in precision, F-Measure, Jaccard index. For the run time analysis, the proposed method takes only 210 seconds to process a WSI and is 20 times faster than U-Net and 19 times faster than SegNet, respectively. In summary, the proposed method is demonstrated to be able to both detect HSILs or higher (SQCC), which indicate patients for further treatments, including colposcopy and surgery to remove the lesion, and rapidly processing WSIs in seconds for practical clinical usages.
format article
author Ching-Wei Wang
Yi-An Liou
Yi-Jia Lin
Cheng-Chang Chang
Pei-Hsuan Chu
Yu-Ching Lee
Chih-Hung Wang
Tai-Kuang Chao
author_facet Ching-Wei Wang
Yi-An Liou
Yi-Jia Lin
Cheng-Chang Chang
Pei-Hsuan Chu
Yu-Ching Lee
Chih-Hung Wang
Tai-Kuang Chao
author_sort Ching-Wei Wang
title Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
title_short Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
title_full Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
title_fullStr Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
title_full_unstemmed Artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
title_sort artificial intelligence-assisted fast screening cervical high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis and treatment planning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1ac7f29941f8436ba33f5bdfe0e9c405
work_keys_str_mv AT chingweiwang artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT yianliou artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT yijialin artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT chengchangchang artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT peihsuanchu artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT yuchinglee artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT chihhungwang artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
AT taikuangchao artificialintelligenceassistedfastscreeningcervicalhighgradesquamousintraepitheliallesionandsquamouscellcarcinomadiagnosisandtreatmentplanning
_version_ 1718388236172132352