Combination of generalist predators, Nesidiocoris tenuis and Macrolophus pygmaeus, with a companion plant, Sesamum indicum: What benefit for biological control of Tuta absoluta?

Tuta absoluta is one of the most damaging pests of tomato crops worldwide. Damage due to larvae may cause up to 100% loss of tomato production. Use of natural enemies to control the pest, notably predatory mirids such as Nesidiocoris tenuis and Macrolophus pygmaeus, is increasingly being promoted. H...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kouassi Arthur J Konan, Lucie S Monticelli, San-Whouly M Ouali-N'goran, Ricardo Ramirez-Romero, Thibaud Martin, Nicolas Desneux
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1acd9262a5b64176a72b4d2bb965c1eb
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Tuta absoluta is one of the most damaging pests of tomato crops worldwide. Damage due to larvae may cause up to 100% loss of tomato production. Use of natural enemies to control the pest, notably predatory mirids such as Nesidiocoris tenuis and Macrolophus pygmaeus, is increasingly being promoted. However, considering the potential damage caused to tomatoes by these omnivorous predators in the absence of T. absoluta, an alternative solution could be required to reduce tomato damage and improve the predators' performance. The use of companion plants can be an innovative solution to cope with these issues. The present study aimed to determine the influence of companion plants and alternative preys on the predators' performance in controlling T. absoluta and protecting tomato plants. We evaluated the effect of predators (alone or combined) and a companion plant (sesame (Sesamum indicum)) on T. absoluta egg predation and crop damage caused by N. tenuis. The influence of an alternative prey (Ephestia kuehniella eggs) on the spatial distribution of predators was also evaluated by caging them in the prey presence or absence, either on tomato or sesame plants or on both. We found that the presence of sesame did not reduce the efficacy of N. tenuis or M. pygmaeus in consuming T. absoluta eggs; hatched egg proportion decreased when N. tenuis, M. pygmaeus, or both predators were present. More specifically, this proportion was more strongly reduced when both predators were combined. Sesame presence also reduced necrotic rings caused by N. tenuis on tomato plants. Nesidiocoris tenuis preferred sesame over tomato plants (except when food was provided only on the tomato plant) and the upper part of the plants, whereas M. pygmaeus preferred tomato to sesame plants (except when food was provided only on the sesame plant) and had no preference for a plant part. Combination of predators N. tenuis and M. pygmaeus allows for better coverage of cultivated plants in terms of occupation of different plant parts and better regulation of T. absoluta populations. Sesamum indicum is a potential companion plant that can be used to significantly reduce N. tenuis damage to tomatoes.