Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records.
<h4>Background</h4>Cardiac dysrhythmias (CD) affect millions of Americans in the United States (US), and are associated with considerable morbidity and mortality. New strategies to combat this growing problem are urgently needed.<h4>Objectives</h4>Predicting CD using electron...
Guardado en:
Autores principales: | Aixia Guo, Sakima Smith, Yosef M Khan, James R Langabeer Ii, Randi E Foraker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1ae99a55ea1a44a6b1e14a9d306cf3c0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Predicting mortality among patients with liver cirrhosis in electronic health records with machine learning.
por: Aixia Guo, et al.
Publicado: (2021) -
Thalamocortical dysrhythmia detected by machine learning
por: Sven Vanneste, et al.
Publicado: (2018) -
Scalable and accurate deep learning with electronic health records
por: Alvin Rajkomar, et al.
Publicado: (2018) -
THE IMPACT OF ENSO IN THE ATACAMA DESERT AND AUSTRALIAN ARID ZONE: EXPLORATORY TIME-SERIES ANALYSIS OF ARCHAEOLOGICAL RECORDS
por: Williams,Alan, et al.
Publicado: (2008) -
Deep representation learning of electronic health records to unlock patient stratification at scale
por: Isotta Landi, et al.
Publicado: (2020)