Concurrent Video Denoising and Deblurring for Dynamic Scenes
Dynamic scene video deblurring is a challenging task due to the spatially variant blur inflicted by independently moving objects and camera shakes. Recent deep learning works bypass the ill-posedness of explicitly deriving the blur kernel by learning pixel-to-pixel mappings, which is commonly enhanc...
Guardado en:
Autores principales: | Efklidis Katsaros, Piotr K. Ostrowski, Daniel Wesierski, Anna Jezierska |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1af63d3770014729bf1a49f163047378 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Human and Scene Motion Deblurring Using Pseudo-Blur Synthesizer
por: Jonathan Samuel Lumentut, et al.
Publicado: (2021) -
Hybrid Deblur Net: Deep Non-Uniform Deblurring With Event Camera
por: Limeng Zhang, et al.
Publicado: (2020) -
Adaptive and Feature-Preserving Mesh Denoising Schemes Based on Developmental Guidance
por: Nannan Li, et al.
Publicado: (2020) -
Construction of Virtual Video Scene and Its Visualization During Sports Training
por: Rui Yuan, et al.
Publicado: (2020) -
StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting
por: Jungsoo Hong, et al.
Publicado: (2021)