Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein.
<h4>Background</h4>Brucellosis, as a serious zoonotic infectious disease, has been recognized as a re-emerging disease in the developing countries worldwide. In china, the incidence of brucellosis is increasing each year, seriously threatening the health of humans as well as animal popul...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1afe1ff00dca4766bc49bdbd4f1f43d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1afe1ff00dca4766bc49bdbd4f1f43d5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1afe1ff00dca4766bc49bdbd4f1f43d52021-12-02T20:24:17ZPaper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein.1935-27271935-273510.1371/journal.pntd.0009695https://doaj.org/article/1afe1ff00dca4766bc49bdbd4f1f43d52021-08-01T00:00:00Zhttps://doi.org/10.1371/journal.pntd.0009695https://doaj.org/toc/1935-2727https://doaj.org/toc/1935-2735<h4>Background</h4>Brucellosis, as a serious zoonotic infectious disease, has been recognized as a re-emerging disease in the developing countries worldwide. In china, the incidence of brucellosis is increasing each year, seriously threatening the health of humans as well as animal populations. Despite a quite number of diagnostic methods currently being used for brucellosis, innovative technologies are still needed for its rapid and accurate diagnosis, especially in area where traditional diagnostic is unavailable.<h4>Methodology/principal findings</h4>In this study, a total of 22 B cell linear epitopes were predicted from five Brucella outer membrane proteins (OMPs) using an immunoinformatic approach. These epitopes were then chemically synthesized, and with the method of indirect ELISA (iELISA), each of them displayed a certain degree of capability in identifying human brucellosis positive sera. Subsequently, a fusion protein consisting of the 22 predicted epitopes was prokaryotically expressed and used as diagnostic antigen in a newly established brucellosis testing method, nano-ZnO modified paper-based ELISA (nano-p-ELISA). According to the verifying test using a collection of sera collected from brucellosis and non-brucellosis patients, the sensitivity and specificity of multiepitope based nano-p-ELISA were 92.38% and 98.35% respectively. The positive predictive value was 98.26% and the negative predictive value was 91.67%. The multiepitope based fusion protein also displayed significantly higher specificity than Brucella lipopolysaccharide (LPS) antigen.<h4>Conclusions</h4>B cell epitopes are important candidates for serologically testing brucellosis. Multiepitope fusion protein based nano-p-ELISA displayed significantly sensitivity and specificity compared to Brucella LPS antigen. The strategy applied in this study will be helpful to develop rapid and accurate diagnostic method for brucellosis in human as well as animal populations.Dehui YinQiongqiong BaiXiling WuHan LiJihong ShaoMingjun SunHai JiangJingpeng ZhangPublic Library of Science (PLoS)articleArctic medicine. Tropical medicineRC955-962Public aspects of medicineRA1-1270ENPLoS Neglected Tropical Diseases, Vol 15, Iss 8, p e0009695 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 |
spellingShingle |
Arctic medicine. Tropical medicine RC955-962 Public aspects of medicine RA1-1270 Dehui Yin Qiongqiong Bai Xiling Wu Han Li Jihong Shao Mingjun Sun Hai Jiang Jingpeng Zhang Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
description |
<h4>Background</h4>Brucellosis, as a serious zoonotic infectious disease, has been recognized as a re-emerging disease in the developing countries worldwide. In china, the incidence of brucellosis is increasing each year, seriously threatening the health of humans as well as animal populations. Despite a quite number of diagnostic methods currently being used for brucellosis, innovative technologies are still needed for its rapid and accurate diagnosis, especially in area where traditional diagnostic is unavailable.<h4>Methodology/principal findings</h4>In this study, a total of 22 B cell linear epitopes were predicted from five Brucella outer membrane proteins (OMPs) using an immunoinformatic approach. These epitopes were then chemically synthesized, and with the method of indirect ELISA (iELISA), each of them displayed a certain degree of capability in identifying human brucellosis positive sera. Subsequently, a fusion protein consisting of the 22 predicted epitopes was prokaryotically expressed and used as diagnostic antigen in a newly established brucellosis testing method, nano-ZnO modified paper-based ELISA (nano-p-ELISA). According to the verifying test using a collection of sera collected from brucellosis and non-brucellosis patients, the sensitivity and specificity of multiepitope based nano-p-ELISA were 92.38% and 98.35% respectively. The positive predictive value was 98.26% and the negative predictive value was 91.67%. The multiepitope based fusion protein also displayed significantly higher specificity than Brucella lipopolysaccharide (LPS) antigen.<h4>Conclusions</h4>B cell epitopes are important candidates for serologically testing brucellosis. Multiepitope fusion protein based nano-p-ELISA displayed significantly sensitivity and specificity compared to Brucella LPS antigen. The strategy applied in this study will be helpful to develop rapid and accurate diagnostic method for brucellosis in human as well as animal populations. |
format |
article |
author |
Dehui Yin Qiongqiong Bai Xiling Wu Han Li Jihong Shao Mingjun Sun Hai Jiang Jingpeng Zhang |
author_facet |
Dehui Yin Qiongqiong Bai Xiling Wu Han Li Jihong Shao Mingjun Sun Hai Jiang Jingpeng Zhang |
author_sort |
Dehui Yin |
title |
Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
title_short |
Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
title_full |
Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
title_fullStr |
Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
title_full_unstemmed |
Paper-based ELISA diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
title_sort |
paper-based elisa diagnosis technology for human brucellosis based on a multiepitope fusion protein. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/1afe1ff00dca4766bc49bdbd4f1f43d5 |
work_keys_str_mv |
AT dehuiyin paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT qiongqiongbai paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT xilingwu paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT hanli paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT jihongshao paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT mingjunsun paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT haijiang paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein AT jingpengzhang paperbasedelisadiagnosistechnologyforhumanbrucellosisbasedonamultiepitopefusionprotein |
_version_ |
1718374036360134656 |