Predicting High-Risk Groups for COVID-19 Anxiety Using AdaBoost and Nomogram: Findings from Nationwide Survey in South Korea
People living in local communities have become more worried about infection due to the extended pandemic situation and the global resurgence of COVID-19. In this study, the author (1) selected features to be included in the nomogram using AdaBoost, which had an advantage in increasing the classifica...
Guardado en:
Autor principal: | Haewon Byeon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b11340a094148f8aa994738072796d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms
por: Halima EL Hamdaoui, et al.
Publicado: (2021) -
Mejoras en el Entrenamiento de Esquemas de Detección de Sonrisas Basados en AdaBoost
por: Fernando Merchán, et al.
Publicado: (2016) - Ada user journal
-
Computation of High-Performance Concrete Compressive Strength Using Standalone and Ensembled Machine Learning Techniques
por: Yue Xu, et al.
Publicado: (2021) -
A Comparative Study of Linear, Random Forest and AdaBoost Regressions for Modeling Non-Traditional Machining
por: G. Shanmugasundar, et al.
Publicado: (2021)