Differential operators on almost-Hermitian manifolds and harmonic forms
We consider several differential operators on compact almost-complex, almost-Hermitian and almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological interpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de Rham,...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b1d3a50eb6c4fdb9a1ae15c66208f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We consider several differential operators on compact almost-complex, almost-Hermitian and almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological interpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies. |
---|