Differential operators on almost-Hermitian manifolds and harmonic forms

We consider several differential operators on compact almost-complex, almost-Hermitian and almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological interpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de Rham,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tardini Nicoletta, Tomassini Adriano
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://doaj.org/article/1b1d3a50eb6c4fdb9a1ae15c66208f6f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b1d3a50eb6c4fdb9a1ae15c66208f6f
record_format dspace
spelling oai:doaj.org-article:1b1d3a50eb6c4fdb9a1ae15c66208f6f2021-12-02T15:13:10ZDifferential operators on almost-Hermitian manifolds and harmonic forms2300-744310.1515/coma-2020-0006https://doaj.org/article/1b1d3a50eb6c4fdb9a1ae15c66208f6f2020-03-01T00:00:00Zhttp://www.degruyter.com/view/j/coma.2020.7.issue-1/coma-2020-0006/coma-2020-0006.xml?format=INThttps://doaj.org/toc/2300-7443We consider several differential operators on compact almost-complex, almost-Hermitian and almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological interpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies.Tardini NicolettaTomassini AdrianoDe Gruyterarticlealmost-complex manifoldalmost-kähler manifolddifferential operatorcohomology32q6053c1558a1453d05MathematicsQA1-939ENComplex Manifolds, Vol 7, Iss 1, Pp 106-128 (2020)
institution DOAJ
collection DOAJ
language EN
topic almost-complex manifold
almost-kähler manifold
differential operator
cohomology
32q60
53c15
58a14
53d05
Mathematics
QA1-939
spellingShingle almost-complex manifold
almost-kähler manifold
differential operator
cohomology
32q60
53c15
58a14
53d05
Mathematics
QA1-939
Tardini Nicoletta
Tomassini Adriano
Differential operators on almost-Hermitian manifolds and harmonic forms
description We consider several differential operators on compact almost-complex, almost-Hermitian and almost-Kähler manifolds. We discuss Hodge Theory for these operators and a possible cohomological interpretation. We compare the associated spaces of harmonic forms and cohomologies with the classical de Rham, Dolbeault, Bott-Chern and Aeppli cohomologies.
format article
author Tardini Nicoletta
Tomassini Adriano
author_facet Tardini Nicoletta
Tomassini Adriano
author_sort Tardini Nicoletta
title Differential operators on almost-Hermitian manifolds and harmonic forms
title_short Differential operators on almost-Hermitian manifolds and harmonic forms
title_full Differential operators on almost-Hermitian manifolds and harmonic forms
title_fullStr Differential operators on almost-Hermitian manifolds and harmonic forms
title_full_unstemmed Differential operators on almost-Hermitian manifolds and harmonic forms
title_sort differential operators on almost-hermitian manifolds and harmonic forms
publisher De Gruyter
publishDate 2020
url https://doaj.org/article/1b1d3a50eb6c4fdb9a1ae15c66208f6f
work_keys_str_mv AT tardininicoletta differentialoperatorsonalmosthermitianmanifoldsandharmonicforms
AT tomassiniadriano differentialoperatorsonalmosthermitianmanifoldsandharmonicforms
_version_ 1718387555519430656