Piecewise Parabolic Approximate Computation Based on an Error-Flattened Segmenter and a Novel Quantizer

This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mengyu An, Yuanyong Luo, Muhan Zheng, Yuxuan Wang, Hongxi Dong, Zhongfeng Wang, Chenglei Peng, Hongbing Pan
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1b1e7f27ac7843b882960064a98ed6ac
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper proposes a novel Piecewise Parabolic Approximate Computation method for hardware function evaluation, which mainly incorporates an error-flattened segmenter and an implementation quantizer. Under a required software maximum absolute error (MAE), the segmenter adaptively selects a minimum number of parabolas to approximate the objective function. By completely imitating the circuit’s behavior before actual implementation, the quantizer calculates the minimum quantization bit width to ensure a non-redundant fixed-point hardware architecture with an MAE of 1 unit of least precision (ulp), eliminating the iterative design time for the circuits. The method causes the number of segments to reach the theoretical limit, and has great advantages in the number of segments and the size of the look-up table (LUT). To prove the superiority of the proposed method, six common functions were implemented by the proposed method under TSMC-90 nm technology. Compared to the state-of-the-art piecewise quadratic approximation methods, the proposed method has advantages in the area with roughly the same delay. Furthermore, a unified function-evaluation unit was also implemented under TSMC-90 nm technology.