Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)

<p>Instrumental global temperature records are derived from the network of in situ measurements of land and sea surface temperatures. This observational evidence is seen as being fundamental to climate science. Therefore, the accuracy of these measurements is of prime importance for the analys...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. Ilyas, D. Nychka, C. Brierley, S. Guillas
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/1b2f4e2712ba47aebcd97c25a7678d5f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b2f4e2712ba47aebcd97c25a7678d5f
record_format dspace
spelling oai:doaj.org-article:1b2f4e2712ba47aebcd97c25a7678d5f2021-11-12T05:19:10ZGlobal ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)10.5194/amt-14-7103-20211867-13811867-8548https://doaj.org/article/1b2f4e2712ba47aebcd97c25a7678d5f2021-11-01T00:00:00Zhttps://amt.copernicus.org/articles/14/7103/2021/amt-14-7103-2021.pdfhttps://doaj.org/toc/1867-1381https://doaj.org/toc/1867-8548<p>Instrumental global temperature records are derived from the network of in situ measurements of land and sea surface temperatures. This observational evidence is seen as being fundamental to climate science. Therefore, the accuracy of these measurements is of prime importance for the analysis of temperature variability. There are spatial gaps in the distribution of instrumental temperature measurements across the globe. This lack of spatial coverage introduces coverage error. An approximate Bayesian computation based multi-resolution lattice kriging is developed and used to quantify the coverage errors through the variance of the spatial process at multiple spatial scales. It critically accounts for the uncertainties in the parameters of this advanced spatial statistics model itself, thereby providing, for the first time, a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps. These coverage errors are combined with the existing estimates of uncertainties due to observational issues at each station location. It results in an ensemble of 100 000 monthly temperatures fields over the entire globe that samples the combination of coverage, parametric and observational uncertainties from 1850 to 2018 over a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">5</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="4650d9d0398300a0901bbede1e68549f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7103-2021-ie00001.svg" width="34pt" height="11pt" src="amt-14-7103-2021-ie00001.png"/></svg:svg></span></span> grid.</p>M. IlyasM. IlyasD. NychkaC. BrierleyS. GuillasCopernicus PublicationsarticleEnvironmental engineeringTA170-171Earthwork. FoundationsTA715-787ENAtmospheric Measurement Techniques, Vol 14, Pp 7103-7121 (2021)
institution DOAJ
collection DOAJ
language EN
topic Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
spellingShingle Environmental engineering
TA170-171
Earthwork. Foundations
TA715-787
M. Ilyas
M. Ilyas
D. Nychka
C. Brierley
S. Guillas
Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
description <p>Instrumental global temperature records are derived from the network of in situ measurements of land and sea surface temperatures. This observational evidence is seen as being fundamental to climate science. Therefore, the accuracy of these measurements is of prime importance for the analysis of temperature variability. There are spatial gaps in the distribution of instrumental temperature measurements across the globe. This lack of spatial coverage introduces coverage error. An approximate Bayesian computation based multi-resolution lattice kriging is developed and used to quantify the coverage errors through the variance of the spatial process at multiple spatial scales. It critically accounts for the uncertainties in the parameters of this advanced spatial statistics model itself, thereby providing, for the first time, a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps. These coverage errors are combined with the existing estimates of uncertainties due to observational issues at each station location. It results in an ensemble of 100 000 monthly temperatures fields over the entire globe that samples the combination of coverage, parametric and observational uncertainties from 1850 to 2018 over a <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">5</mn><msup><mi/><mo>∘</mo></msup><mo>×</mo><mn mathvariant="normal">5</mn><msup><mi/><mo>∘</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="4650d9d0398300a0901bbede1e68549f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-7103-2021-ie00001.svg" width="34pt" height="11pt" src="amt-14-7103-2021-ie00001.png"/></svg:svg></span></span> grid.</p>
format article
author M. Ilyas
M. Ilyas
D. Nychka
C. Brierley
S. Guillas
author_facet M. Ilyas
M. Ilyas
D. Nychka
C. Brierley
S. Guillas
author_sort M. Ilyas
title Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
title_short Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
title_full Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
title_fullStr Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
title_full_unstemmed Global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (GETQUOCS)
title_sort global ensemble of temperatures over 1850–2018: quantification of uncertainties in observations, coverage, and spatial modeling (getquocs)
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/1b2f4e2712ba47aebcd97c25a7678d5f
work_keys_str_mv AT milyas globalensembleoftemperaturesover18502018quantificationofuncertaintiesinobservationscoverageandspatialmodelinggetquocs
AT milyas globalensembleoftemperaturesover18502018quantificationofuncertaintiesinobservationscoverageandspatialmodelinggetquocs
AT dnychka globalensembleoftemperaturesover18502018quantificationofuncertaintiesinobservationscoverageandspatialmodelinggetquocs
AT cbrierley globalensembleoftemperaturesover18502018quantificationofuncertaintiesinobservationscoverageandspatialmodelinggetquocs
AT sguillas globalensembleoftemperaturesover18502018quantificationofuncertaintiesinobservationscoverageandspatialmodelinggetquocs
_version_ 1718431155129155584