<named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lindsey Bomar, Silvio D. Brugger, Brian H. Yost, Sean S. Davies, Katherine P. Lemon
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2016
Materias:
Acceso en línea:https://doaj.org/article/1b34758e960d4fb08fb8fbaaba64726f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b34758e960d4fb08fb8fbaaba64726f
record_format dspace
spelling oai:doaj.org-article:1b34758e960d4fb08fb8fbaaba64726f2021-11-15T15:49:40Z<named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols10.1128/mBio.01725-152150-7511https://doaj.org/article/1b34758e960d4fb08fb8fbaaba64726f2016-03-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.01725-15https://doaj.org/toc/2150-7511ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.Lindsey BomarSilvio D. BruggerBrian H. YostSean S. DaviesKatherine P. LemonAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 7, Iss 1 (2016)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Lindsey Bomar
Silvio D. Brugger
Brian H. Yost
Sean S. Davies
Katherine P. Lemon
<named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
description ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. IMPORTANCE Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization.
format article
author Lindsey Bomar
Silvio D. Brugger
Brian H. Yost
Sean S. Davies
Katherine P. Lemon
author_facet Lindsey Bomar
Silvio D. Brugger
Brian H. Yost
Sean S. Davies
Katherine P. Lemon
author_sort Lindsey Bomar
title <named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
title_short <named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
title_full <named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
title_fullStr <named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
title_full_unstemmed <named-content content-type="genus-species">Corynebacterium accolens</named-content> Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols
title_sort <named-content content-type="genus-species">corynebacterium accolens</named-content> releases antipneumococcal free fatty acids from human nostril and skin surface triacylglycerols
publisher American Society for Microbiology
publishDate 2016
url https://doaj.org/article/1b34758e960d4fb08fb8fbaaba64726f
work_keys_str_mv AT lindseybomar namedcontentcontenttypegenusspeciescorynebacteriumaccolensnamedcontentreleasesantipneumococcalfreefattyacidsfromhumannostrilandskinsurfacetriacylglycerols
AT silviodbrugger namedcontentcontenttypegenusspeciescorynebacteriumaccolensnamedcontentreleasesantipneumococcalfreefattyacidsfromhumannostrilandskinsurfacetriacylglycerols
AT brianhyost namedcontentcontenttypegenusspeciescorynebacteriumaccolensnamedcontentreleasesantipneumococcalfreefattyacidsfromhumannostrilandskinsurfacetriacylglycerols
AT seansdavies namedcontentcontenttypegenusspeciescorynebacteriumaccolensnamedcontentreleasesantipneumococcalfreefattyacidsfromhumannostrilandskinsurfacetriacylglycerols
AT katherineplemon namedcontentcontenttypegenusspeciescorynebacteriumaccolensnamedcontentreleasesantipneumococcalfreefattyacidsfromhumannostrilandskinsurfacetriacylglycerols
_version_ 1718427444813234176