Stochastic binary synapses having sigmoidal cumulative distribution functions for unsupervised learning with spike timing-dependent plasticity
Abstract Spike timing-dependent plasticity (STDP), which is widely studied as a fundamental synaptic update rule for neuromorphic hardware, requires precise control of continuous weights. From the viewpoint of hardware implementation, a simplified update rule is desirable. Although simplified STDP w...
Guardado en:
Autores principales: | Yoshifumi Nishi, Kumiko Nomura, Takao Marukame, Koichi Mizushima |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b42b9540ff943b4805ab44b662f914c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SiGMoiD: A super-statistical generative model for binary data.
por: Xiaochuan Zhao, et al.
Publicado: (2021) -
Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses
por: Alexander Serb, et al.
Publicado: (2016) -
Emergent oscillations in networks of stochastic spiking neurons.
por: Edward Wallace, et al.
Publicado: (2011) -
Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices
por: Finn Zahari, et al.
Publicado: (2020) -
Unusual achalasic sigmoid esophagus
por: Narendra Pandit, et al.
Publicado: (2019)