A Note on a Triple Integral

A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial fu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Robert Reynolds, Allan Stauffer
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1b45877391ec427ea15f394a1629be0d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b45877391ec427ea15f394a1629be0d
record_format dspace
spelling oai:doaj.org-article:1b45877391ec427ea15f394a1629be0d2021-11-25T19:06:22ZA Note on a Triple Integral10.3390/sym131120562073-8994https://doaj.org/article/1b45877391ec427ea15f394a1629be0d2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2056https://doaj.org/toc/2073-8994A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.Robert ReynoldsAllan StaufferMDPI AGarticletriple integralLerch functionCatalan’s constantApéry’s constantEuler’s constantGlaisher’s constantMathematicsQA1-939ENSymmetry, Vol 13, Iss 2056, p 2056 (2021)
institution DOAJ
collection DOAJ
language EN
topic triple integral
Lerch function
Catalan’s constant
Apéry’s constant
Euler’s constant
Glaisher’s constant
Mathematics
QA1-939
spellingShingle triple integral
Lerch function
Catalan’s constant
Apéry’s constant
Euler’s constant
Glaisher’s constant
Mathematics
QA1-939
Robert Reynolds
Allan Stauffer
A Note on a Triple Integral
description A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.
format article
author Robert Reynolds
Allan Stauffer
author_facet Robert Reynolds
Allan Stauffer
author_sort Robert Reynolds
title A Note on a Triple Integral
title_short A Note on a Triple Integral
title_full A Note on a Triple Integral
title_fullStr A Note on a Triple Integral
title_full_unstemmed A Note on a Triple Integral
title_sort note on a triple integral
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1b45877391ec427ea15f394a1629be0d
work_keys_str_mv AT robertreynolds anoteonatripleintegral
AT allanstauffer anoteonatripleintegral
AT robertreynolds noteonatripleintegral
AT allanstauffer noteonatripleintegral
_version_ 1718410263408934912