A Note on a Triple Integral
A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial fu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b45877391ec427ea15f394a1629be0d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1b45877391ec427ea15f394a1629be0d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1b45877391ec427ea15f394a1629be0d2021-11-25T19:06:22ZA Note on a Triple Integral10.3390/sym131120562073-8994https://doaj.org/article/1b45877391ec427ea15f394a1629be0d2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2056https://doaj.org/toc/2073-8994A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new.Robert ReynoldsAllan StaufferMDPI AGarticletriple integralLerch functionCatalan’s constantApéry’s constantEuler’s constantGlaisher’s constantMathematicsQA1-939ENSymmetry, Vol 13, Iss 2056, p 2056 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
triple integral Lerch function Catalan’s constant Apéry’s constant Euler’s constant Glaisher’s constant Mathematics QA1-939 |
spellingShingle |
triple integral Lerch function Catalan’s constant Apéry’s constant Euler’s constant Glaisher’s constant Mathematics QA1-939 Robert Reynolds Allan Stauffer A Note on a Triple Integral |
description |
A closed form expression for a triple integral not previously considered is derived, in terms of the Lerch function. Almost all Lerch functions have an asymmetrical zero-distribution. The kernel of the integral involves the product of the logarithmic, exponential, quotient radical, and polynomial functions. Special cases are derived in terms of fundamental constants; results are summarized in a table. All results in this work are new. |
format |
article |
author |
Robert Reynolds Allan Stauffer |
author_facet |
Robert Reynolds Allan Stauffer |
author_sort |
Robert Reynolds |
title |
A Note on a Triple Integral |
title_short |
A Note on a Triple Integral |
title_full |
A Note on a Triple Integral |
title_fullStr |
A Note on a Triple Integral |
title_full_unstemmed |
A Note on a Triple Integral |
title_sort |
note on a triple integral |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/1b45877391ec427ea15f394a1629be0d |
work_keys_str_mv |
AT robertreynolds anoteonatripleintegral AT allanstauffer anoteonatripleintegral AT robertreynolds noteonatripleintegral AT allanstauffer noteonatripleintegral |
_version_ |
1718410263408934912 |