Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
Abstract Deep learning-based radiomics (DLR) was developed to extract deep information from multiple modalities of magnetic resonance (MR) images. The performance of DLR for predicting the mutation status of isocitrate dehydrogenase 1 (IDH1) was validated in a dataset of 151 patients with low-grade...
Guardado en:
Autores principales: | Zeju Li, Yuanyuan Wang, Jinhua Yu, Yi Guo, Wei Cao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b4a7db0c4aa498c9fcfebaaadcbb792 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Observing deep radiomics for the classification of glioma grades
por: Kazuma Kobayashi, et al.
Publicado: (2021) -
Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients
por: Jing Yan, et al.
Publicado: (2021) -
RUNX1 and REXO2 are associated with the heterogeneity and prognosis of IDH wild type lower grade glioma
por: Haiwei Wang, et al.
Publicado: (2021) -
Development of a nomograph integrating radiomics and deep features based on MRI to predict the prognosis of high grade Gliomas
por: Yutao Wang, et al.
Publicado: (2021) -
Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images
por: Shuai Jiang, et al.
Publicado: (2021)