An adaptive approach to machine learning for compact particle accelerators
Abstract Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with whi...
Guardado en:
Autores principales: | Alexander Scheinker, Frederick Cropp, Sergio Paiagua, Daniele Filippetto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b5bd259315f456690de4a256e722122 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams
por: T. Kurz, et al.
Publicado: (2021) -
Compact acceleration of energetic neutral atoms using high intensity laser-solid interaction
por: Malay Dalui, et al.
Publicado: (2017) -
Accelerated mapping of electronic density of states patterns of metallic nanoparticles via machine-learning
por: Kihoon Bang, et al.
Publicado: (2021) -
Particle movements provoke avalanche-like compaction in soft colloid filter cakes
por: Arne Lüken, et al.
Publicado: (2021) -
A Compact Adaptive Particle Swarm Optimization Algorithm in the Application of the Mobile Sensor Localization
por: Wei-Min Zheng, et al.
Publicado: (2021)