An adaptive approach to machine learning for compact particle accelerators

Abstract Machine learning (ML) tools are able to learn relationships between the inputs and outputs of large complex systems directly from data. However, for time-varying systems, the predictive capabilities of ML tools degrade if the systems are no longer accurately represented by the data with whi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexander Scheinker, Frederick Cropp, Sergio Paiagua, Daniele Filippetto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1b5bd259315f456690de4a256e722122
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares