A novel hyperspectral compressive sensing framework of plant leaves based on multiple arbitrary-shape regions of interest
Massive plant hyperspectral images (HSIs) result in huge storage space and put a heavy burden for the traditional data acquisition and compression technology. For plant leaf HSIs, useful plant information is located in multiple arbitrary-shape regions of interest (MAROIs), while the background usual...
Guardado en:
Autores principales: | Yuewei Jia, Lingyun Xue, Ping Xu, Bin Luo, Ke-nan Chen, Lei Zhu, Yian Liu, Ming Yan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b5c0d51f1c141558504dc427eb6c7b4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Estimating Optimal Number of Compressively Sensed Bands for Hyperspectral Classification via Feature Selection
por: C. J. Della Porta, et al.
Publicado: (2021) -
Learned Hyperspectral Compression Using a Student’s T Hyperprior
por: Yuanyuan Guo, et al.
Publicado: (2021) -
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
por: Itiya Aneece, et al.
Publicado: (2021) -
Semi-Automatic Spectral Image Stitching for a Compact Hybrid Linescan Hyperspectral Camera towards Near Field Remote Monitoring of Potato Crop Leaves
por: Pierre Chatelain, et al.
Publicado: (2021) -
Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing
por: YANG Feifei, et al.
Publicado: (2021)