A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
Multi-organ segmentation of X-ray images is of fundamental importance for computer aided diagnosis systems. However, the most advanced semantic segmentation methods rely on deep learning and require a huge amount of labeled images, which are rarely available due to both the high cost of human resour...
Guardado en:
Autores principales: | Giorgio Ciano, Paolo Andreini, Tommaso Mazzierli, Monica Bianchini, Franco Scarselli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b5d1880254149c885f696e5bbd61d1d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Impact of Lung Segmentation on the Diagnosis and Explanation of COVID-19 in Chest X-ray Images
por: Lucas O. Teixeira, et al.
Publicado: (2021) -
Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images
por: Saman Motamed, et al.
Publicado: (2021) -
Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input
por: Shih-Kai Hung, et al.
Publicado: (2021) -
Data Augmentation of Backscatter X-ray Images for Deep Learning-Based Automatic Cargo Inspection
por: Hyunwoo Cho, et al.
Publicado: (2021) -
Textured Mesh Generation Using Multi-View and Multi-Source Supervision and Generative Adversarial Networks
por: Mingyun Wen, et al.
Publicado: (2021)