Machine learning-based microstructure prediction during laser sintering of alumina
Abstract Predicting material’s microstructure under new processing conditions is essential in advanced manufacturing and materials science. This is because the material’s microstructure hugely influences the material’s properties. We demonstrate an elegant machine learning algorithm that faithfully...
Guardado en:
Autores principales: | Jianan Tang, Xiao Geng, Dongsheng Li, Yunfeng Shi, Jianhua Tong, Hai Xiao, Fei Peng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b792a930ba749c6b0fd702737a7049f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Millisecond photonic sintering of iron oxide doped alumina ceramic coatings
por: Evgeniia Gilshtein, et al.
Publicado: (2021) -
Laser-Sintered Mg-Zn Supersaturated Solid Solution with High Corrosion Resistance
por: Youwen Yang, et al.
Publicado: (2021) -
Process control of surface quality and part microstructure in selective laser sintering involving highly degraded polyamide 12 materials
por: Feifei Yang, et al.
Publicado: (2021) -
Microstructure and Some Properties of Aluminum-Silicon Matrix Composites Reinforced by Alumina or Chromia
por: Ahmed A. Moosa
Publicado: (2010) -
Microstructure and Some Properties of Aluminum-Silicon Matrix Composites Reinforced by Alumina or Chromia
por: Ahmed A. Moosa
Publicado: (2010)