Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach

Urinary bladder cancer is one of the most common cancers of the urinary tract. This cancer is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and care. With...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sandi Baressi Šegota, Ivan Lorencin, Klara Smolić, Nikola Anđelić, Dean Markić, Vedran Mrzljak, Daniel Štifanić, Jelena Musulin, Josip Španjol, Zlatan Car
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1b7973215b66493bb56f23ee94f2095c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b7973215b66493bb56f23ee94f2095c
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic artificial intelligence
computer tomography
machine learning
semantic segmentation
urinary bladder cancer
Biology (General)
QH301-705.5
spellingShingle artificial intelligence
computer tomography
machine learning
semantic segmentation
urinary bladder cancer
Biology (General)
QH301-705.5
Sandi Baressi Šegota
Ivan Lorencin
Klara Smolić
Nikola Anđelić
Dean Markić
Vedran Mrzljak
Daniel Štifanić
Jelena Musulin
Josip Španjol
Zlatan Car
Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
description Urinary bladder cancer is one of the most common cancers of the urinary tract. This cancer is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and care. With the aim of increasing diagnosis accuracy, artificial intelligence algorithms are introduced to clinical decision making and diagnostics. One of the standard procedures for bladder cancer diagnosis is computer tomography (CT) scanning. In this research, a transfer learning approach to the semantic segmentation of urinary bladder cancer masses from CT images is presented. The initial data set is divided into three sub-sets according to image planes: frontal (4413 images), axial (4993 images), and sagittal (996 images). First, AlexNet is utilized for the design of a plane recognition system, and it achieved high classification and generalization performances with an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>A</mi><mi>U</mi><msub><mi>C</mi><mrow><mi>m</mi><mi>i</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub></mrow><mo>¯</mo></mover></semantics></math></inline-formula> of 0.9999 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>A</mi><mi>U</mi><msub><mi>C</mi><mrow><mi>m</mi><mi>i</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0006. Furthermore, by applying the transfer learning approach, significant improvements in both semantic segmentation and generalization performances were achieved. For the case of the frontal plane, the highest performances were achieved if pre-trained ResNet101 architecture was used as a backbone for U-net with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> up to 0.9587 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0059. When U-net was used for the semantic segmentation of urinary bladder cancer masses from images in the axial plane, the best results were achieved if pre-trained ResNet50 was used as a backbone, with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> up to 0.9372 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0147. Finally, in the case of images in the sagittal plane, the highest results were achieved with VGG-16 as a backbone. In this case, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> values up to 0.9660 with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0486 were achieved. From the listed results, the proposed semantic segmentation system worked with high performance both from the semantic segmentation and generalization standpoints. The presented results indicate that there is the possibility for the utilization of the semantic segmentation system in clinical practice.
format article
author Sandi Baressi Šegota
Ivan Lorencin
Klara Smolić
Nikola Anđelić
Dean Markić
Vedran Mrzljak
Daniel Štifanić
Jelena Musulin
Josip Španjol
Zlatan Car
author_facet Sandi Baressi Šegota
Ivan Lorencin
Klara Smolić
Nikola Anđelić
Dean Markić
Vedran Mrzljak
Daniel Štifanić
Jelena Musulin
Josip Španjol
Zlatan Car
author_sort Sandi Baressi Šegota
title Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
title_short Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
title_full Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
title_fullStr Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
title_full_unstemmed Semantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach
title_sort semantic segmentation of urinary bladder cancer masses from ct images: a transfer learning approach
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/1b7973215b66493bb56f23ee94f2095c
work_keys_str_mv AT sandibaressisegota semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT ivanlorencin semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT klarasmolic semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT nikolaanđelic semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT deanmarkic semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT vedranmrzljak semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT danielstifanic semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT jelenamusulin semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT josipspanjol semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
AT zlatancar semanticsegmentationofurinarybladdercancermassesfromctimagesatransferlearningapproach
_version_ 1718412942084407296
spelling oai:doaj.org-article:1b7973215b66493bb56f23ee94f2095c2021-11-25T16:47:20ZSemantic Segmentation of Urinary Bladder Cancer Masses from CT Images: A Transfer Learning Approach10.3390/biology101111342079-7737https://doaj.org/article/1b7973215b66493bb56f23ee94f2095c2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-7737/10/11/1134https://doaj.org/toc/2079-7737Urinary bladder cancer is one of the most common cancers of the urinary tract. This cancer is characterized by its high metastatic potential and recurrence rate. Due to the high metastatic potential and recurrence rate, correct and timely diagnosis is crucial for successful treatment and care. With the aim of increasing diagnosis accuracy, artificial intelligence algorithms are introduced to clinical decision making and diagnostics. One of the standard procedures for bladder cancer diagnosis is computer tomography (CT) scanning. In this research, a transfer learning approach to the semantic segmentation of urinary bladder cancer masses from CT images is presented. The initial data set is divided into three sub-sets according to image planes: frontal (4413 images), axial (4993 images), and sagittal (996 images). First, AlexNet is utilized for the design of a plane recognition system, and it achieved high classification and generalization performances with an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>A</mi><mi>U</mi><msub><mi>C</mi><mrow><mi>m</mi><mi>i</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub></mrow><mo>¯</mo></mover></semantics></math></inline-formula> of 0.9999 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>A</mi><mi>U</mi><msub><mi>C</mi><mrow><mi>m</mi><mi>i</mi><mi>c</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0006. Furthermore, by applying the transfer learning approach, significant improvements in both semantic segmentation and generalization performances were achieved. For the case of the frontal plane, the highest performances were achieved if pre-trained ResNet101 architecture was used as a backbone for U-net with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> up to 0.9587 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0059. When U-net was used for the semantic segmentation of urinary bladder cancer masses from images in the axial plane, the best results were achieved if pre-trained ResNet50 was used as a backbone, with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> up to 0.9372 and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0147. Finally, in the case of images in the sagittal plane, the highest results were achieved with VGG-16 as a backbone. In this case, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover><mrow><mi>D</mi><mi>S</mi><mi>C</mi></mrow><mo>¯</mo></mover></semantics></math></inline-formula> values up to 0.9660 with a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>D</mi><mi>S</mi><mi>C</mi><mo>)</mo></mrow></semantics></math></inline-formula> of 0.0486 were achieved. From the listed results, the proposed semantic segmentation system worked with high performance both from the semantic segmentation and generalization standpoints. The presented results indicate that there is the possibility for the utilization of the semantic segmentation system in clinical practice.Sandi Baressi ŠegotaIvan LorencinKlara SmolićNikola AnđelićDean MarkićVedran MrzljakDaniel ŠtifanićJelena MusulinJosip ŠpanjolZlatan CarMDPI AGarticleartificial intelligencecomputer tomographymachine learningsemantic segmentationurinary bladder cancerBiology (General)QH301-705.5ENBiology, Vol 10, Iss 1134, p 1134 (2021)