Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which i...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1b7b37e179f04ca3bb183c59df3d2dfd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1b7b37e179f04ca3bb183c59df3d2dfd2021-12-05T14:10:53ZUniversal inequalities of the poly-drifting Laplacian on smooth metric measure spaces2391-545510.1515/math-2021-0100https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd2021-10-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0100https://doaj.org/toc/2391-5455In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.Hou LanbaoDu FengMao JingWu ChuanxiDe Gruyterarticleeigenvaluesuniversal inequalitiespoly-drifting laplaciansmooth metric measure spaceweighted ricci curvature35p1553c2053c42MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1110-1119 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
eigenvalues universal inequalities poly-drifting laplacian smooth metric measure space weighted ricci curvature 35p15 53c20 53c42 Mathematics QA1-939 |
spellingShingle |
eigenvalues universal inequalities poly-drifting laplacian smooth metric measure space weighted ricci curvature 35p15 53c20 53c42 Mathematics QA1-939 Hou Lanbao Du Feng Mao Jing Wu Chuanxi Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
description |
In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem. |
format |
article |
author |
Hou Lanbao Du Feng Mao Jing Wu Chuanxi |
author_facet |
Hou Lanbao Du Feng Mao Jing Wu Chuanxi |
author_sort |
Hou Lanbao |
title |
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
title_short |
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
title_full |
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
title_fullStr |
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
title_full_unstemmed |
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces |
title_sort |
universal inequalities of the poly-drifting laplacian on smooth metric measure spaces |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd |
work_keys_str_mv |
AT houlanbao universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces AT dufeng universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces AT maojing universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces AT wuchuanxi universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces |
_version_ |
1718371586975727616 |