Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces

In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which i...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hou Lanbao, Du Feng, Mao Jing, Wu Chuanxi
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1b7b37e179f04ca3bb183c59df3d2dfd
record_format dspace
spelling oai:doaj.org-article:1b7b37e179f04ca3bb183c59df3d2dfd2021-12-05T14:10:53ZUniversal inequalities of the poly-drifting Laplacian on smooth metric measure spaces2391-545510.1515/math-2021-0100https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd2021-10-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0100https://doaj.org/toc/2391-5455In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.Hou LanbaoDu FengMao JingWu ChuanxiDe Gruyterarticleeigenvaluesuniversal inequalitiespoly-drifting laplaciansmooth metric measure spaceweighted ricci curvature35p1553c2053c42MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 1110-1119 (2021)
institution DOAJ
collection DOAJ
language EN
topic eigenvalues
universal inequalities
poly-drifting laplacian
smooth metric measure space
weighted ricci curvature
35p15
53c20
53c42
Mathematics
QA1-939
spellingShingle eigenvalues
universal inequalities
poly-drifting laplacian
smooth metric measure space
weighted ricci curvature
35p15
53c20
53c42
Mathematics
QA1-939
Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
description In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which is uniformly bounded from above, and successfully obtain several universal inequalities of this eigenvalue problem.
format article
author Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
author_facet Hou Lanbao
Du Feng
Mao Jing
Wu Chuanxi
author_sort Hou Lanbao
title Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_short Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_full Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_fullStr Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_full_unstemmed Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
title_sort universal inequalities of the poly-drifting laplacian on smooth metric measure spaces
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd
work_keys_str_mv AT houlanbao universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT dufeng universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT maojing universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
AT wuchuanxi universalinequalitiesofthepolydriftinglaplacianonsmoothmetricmeasurespaces
_version_ 1718371586975727616