Universal inequalities of the poly-drifting Laplacian on smooth metric measure spaces
In this paper, we study the eigenvalue problem of poly-drifting Laplacian on complete smooth metric measure space (M,⟨,⟩,e−ϕdv)\left(M,\langle ,\rangle ,{e}^{-\phi }{\rm{d}}v), with nonnegative weighted Ricci curvature Ricϕ≥0{{\rm{Ric}}}^{\phi }\ge 0 for some ϕ∈C2(M)\phi \in {C}^{2}\left(M), which i...
Guardado en:
Autores principales: | Hou Lanbao, Du Feng, Mao Jing, Wu Chuanxi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b7b37e179f04ca3bb183c59df3d2dfd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deformations of Strong Kähler with torsion metrics
por: Piovani Riccardo, et al.
Publicado: (2021) -
A survey on Inverse mean curvature flow in ROSSes
por: Pipoli Giuseppe
Publicado: (2017) -
Locally conformally balanced metrics on almost abelian Lie algebras
por: Paradiso Fabio
Publicado: (2021) -
On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
por: Blaga Adara M., et al.
Publicado: (2019) -
On Weak Super Ricci Flow through Neckpinch
por: Lakzian Sajjad, et al.
Publicado: (2021)