A self-consistent probabilistic formulation for inference of interactions
Abstract Large molecular interaction networks are nowadays assembled in biomedical researches along with important technological advances. Diverse interaction measures, for which input solely consisting of the incidence of causal-factors, with the corresponding outcome of an inquired effect, are for...
Guardado en:
Autores principales: | Jorge Fernandez-de-Cossio, Jorge Fernandez-de-Cossio-Diaz, Yasser Perera-Negrin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b80e32ab13549fb8b8eefb924588324 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback
por: A. Emin Orhan, et al.
Publicado: (2017) -
Self-consistent solution for the magnetic exchange interaction mediated by a superconductor
por: Atousa Ghanbari, et al.
Publicado: (2021) -
Probabilistic phylogenetic inference with insertions and deletions.
por: Elena Rivas, et al.
Publicado: (2008) -
On the origins of suboptimality in human probabilistic inference.
por: Luigi Acerbi, et al.
Publicado: (2014) -
Neural substrates of cognitive biases during probabilistic inference
por: Alireza Soltani, et al.
Publicado: (2016)