Non-Destructive Diagnostic Methods for Fire-Side Corrosion Risk Assessment of Industrial Scale Boilers, Burning Low Quality Solid Biofuels—A Mini Review

The use of low-emission combustion technologies in power boilers has contributed to a significant increase in the rate of high-temperature corrosion in boilers and increased risk of failure. The use of low quality biomass and waste, caused by the current policies pressing on the decarbonization of t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tomasz Hardy, Amit Arora, Halina Pawlak-Kruczek, Wojciech Rafajłowicz, Jerzy Wietrzych, Łukasz Niedźwiecki, Vishwajeet, Krzysztof Mościcki
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/1b86f015e44c468a882f098d4eb39fc8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The use of low-emission combustion technologies in power boilers has contributed to a significant increase in the rate of high-temperature corrosion in boilers and increased risk of failure. The use of low quality biomass and waste, caused by the current policies pressing on the decarbonization of the energy generation sector, might exacerbate this problem. Additionally, all of the effects of the valorization techniques on the inorganic fraction of the solid fuel have become an additional uncertainty. As a result, fast and reliable corrosion diagnostic techniques are slowly becoming a necessity to maintain the security of the energy supply for the power grid. Non-destructive testing methods (NDT) are helpful in detecting these threats. The most important NDT methods, which can be used to assess the degree of corrosion of boiler tubes, detection of the tubes’ surface roughness and the internal structural defects, have been presented in the paper. The idea of the use of optical techniques in the initial diagnosis of boiler evaporators’ surface conditions has also been presented.