DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data
Single-cell omics analysis can reveal heterogeneity among individual cells at different levels. Here, the authors develop DC3, a computational method for joint analysis of various bulk and single-cell data from the same heterogeneous cell population.
Guardado en:
Autores principales: | Wanwen Zeng, Xi Chen, Zhana Duren, Yong Wang, Rui Jiang, Wing Hung Wong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b95ca72225a421798a545948feed603 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised clustering and epigenetic classification of single cells
por: Mahdi Zamanighomi, et al.
Publicado: (2018) -
Modeling regulatory network topology improves genome-wide analyses of complex human traits
por: Xiang Zhu, et al.
Publicado: (2021) -
Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
por: Georgette Tanner, et al.
Publicado: (2021) -
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
por: Xuran Wang, et al.
Publicado: (2019) -
FastClone is a probabilistic tool for deconvoluting tumor heterogeneity in bulk-sequencing samples
por: Yao Xiao, et al.
Publicado: (2020)