Comparison of Resampling Techniques for Imbalanced Datasets in Machine Learning: Application to Epileptogenic Zone Localization From Interictal Intracranial EEG Recordings in Patients With Focal Epilepsy
Aim: In neuroscience research, data are quite often characterized by an imbalanced distribution between the majority and minority classes, an issue that can limit or even worsen the prediction performance of machine learning methods. Different resampling procedures have been developed to face this p...
Guardado en:
Autores principales: | Giulia Varotto, Gianluca Susi, Laura Tassi, Francesca Gozzo, Silvana Franceschetti, Ferruccio Panzica |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1b9ae50c9eed4277bc3395713a3db303 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Boosting-GNN: Boosting Algorithm for Graph Networks on Imbalanced Node Classification
por: Shuhao Shi, et al.
Publicado: (2021) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021) -
ANALYZING THE IMPACT OF RESAMPLING METHOD FOR IMBALANCED DATA TEXT IN INDONESIAN SCIENTIFIC ARTICLES CATEGORIZATION
por: Ariani Indrawati, et al.
Publicado: (2020) -
TWO-WAY METRIC LEARNING WITH MAJORITY AND MINORITY SUBSETS FOR CLASSIFICATION OF LARGE EXTREMELY IMBALANCED FACE DATASET
por: Ashu Kaushik, et al.
Publicado: (2021) -
Handling Imbalanced Datasets for Robust Deep Neural Network-Based Fault Detection in Manufacturing Systems
por: Jefkine Kafunah, et al.
Publicado: (2021)