Light-YOLOv4: An Edge-Device Oriented Target Detection Method for Remote Sensing Images
Most deep-learning-based target detection methods have high computational complexity and memory consumption, and they are difficult to deploy on edge devices with limited computing resources and memory. To tackle this problem, this article proposes to learn a lightweight detector named Light-YOLOv4,...
Guardado en:
Autores principales: | Xiaojie Ma, Kefeng Ji, Boli Xiong, Linbin Zhang, Sijia Feng, Gangyao Kuang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1baa97f168b744baa380b29a853ff08d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
STransFuse: Fusing Swin Transformer and Convolutional Neural Network for Remote Sensing Image Semantic Segmentation
por: Liang Gao, et al.
Publicado: (2021) -
Design and Analysis of CubeSat Microwave Radiometer Constellations to Observe Temporal Variability of the Atmosphere
por: Yuriy V. Goncharenko, et al.
Publicado: (2021) -
A Simulation Experiment on In-Situ Observation of Short-Wavelength Scale Dynamic Processes and Potential Applications to Wide-Swath Interferometric Altimetry Validation
por: Chen Wang, et al.
Publicado: (2021) -
Long-Term Resilience Curve Analysis of Wenchuan Earthquake-Affected Counties Using DMSP-OLS Nighttime Light Images
por: Zhumei Liu, et al.
Publicado: (2021) -
Estimating Optimal Number of Compressively Sensed Bands for Hyperspectral Classification via Feature Selection
por: C. J. Della Porta, et al.
Publicado: (2021)