Autophagy regulates the stemness of cervical cancer stem cells

Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSC...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yang Y, Yu L, Li J, Yuan YH, Wang XL, Yan SR, Li DS, Ding Y
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2017
Materias:
Acceso en línea:https://doaj.org/article/1bb2052aad394a379e2626d36f09e22b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSCs) are a rare population of multipotent cells with the capacity to self-renew. It has been reported that there are CSCs in cervical cancer cells. Pluripotency-associated (PA) transcription factors such as Oct4, Sox2, Nanog and CD44 have been used to isolate CSCs subpopulations. In this study, we showed that autophagy plays an important role in the biological behavior of cervical cancer cells. The expression of the autophagy protein Beclin 1 and LC3B was higher in tumorspheres established from human cervical cancers cell lines (and CaSki) than in the parental adherent cells. It was also observed that the basal and starvation-induced autophagy flux was higher in tumorspheres than in the bulk population. Autophagy could regulate the expression level of PA proteins in cervical CSCs. In addition, CRISPR/Cas 9-mediated Beclin 1 knockout enhanced the malignancy of HeLa cells, leading to accumulation of PA proteins and promoted tumorsphere formation. Our findings suggest that autophagy modulates homeostasis of PA proteins, and Beclin 1 is critical for CSC maintenance and tumor development in nude mice. This demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance. Keywords: cervical cancer, autophagy, cancer stem cell, LC3, Oct4