Artificial generation of representative single Li-ion electrode particle architectures from microscopy data
Abstract Accurately capturing the architecture of single lithium-ion electrode particles is necessary for understanding their performance limitations and degradation mechanisms through multi-physics modeling. Information is drawn from multimodal microscopy techniques to artificially generate LiNi0.5...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1bcc7b65cadf4ea9833d5279b963535c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Accurately capturing the architecture of single lithium-ion electrode particles is necessary for understanding their performance limitations and degradation mechanisms through multi-physics modeling. Information is drawn from multimodal microscopy techniques to artificially generate LiNi0.5Mn0.3Co0.2O2 particles with full sub-particle grain detail. Statistical representations of particle architectures are derived from X-ray nano-computed tomography data supporting an ‘outer shell’ model, and sub-particle grain representations are derived from focused-ion beam electron backscatter diffraction data supporting a ‘grain’ model. A random field model used to characterize and generate the outer shells, and a random tessellation model used to characterize and generate grain architectures, are combined to form a multi-scale model for the generation of virtual electrode particles with full-grain detail. This work demonstrates the possibility of generating representative single electrode particle architectures for modeling and characterization that can guide synthesis approaches of particle architectures with enhanced performance. |
---|