Artificial generation of representative single Li-ion electrode particle architectures from microscopy data
Abstract Accurately capturing the architecture of single lithium-ion electrode particles is necessary for understanding their performance limitations and degradation mechanisms through multi-physics modeling. Information is drawn from multimodal microscopy techniques to artificially generate LiNi0.5...
Guardado en:
Autores principales: | Orkun Furat, Lukas Petrich, Donal P. Finegan, David Diercks, Francois Usseglio-Viretta, Kandler Smith, Volker Schmidt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1bcc7b65cadf4ea9833d5279b963535c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computational engineering of the oxygen electrode-electrolyte interface in solid oxide fuel cells
por: Kaiming Cheng, et al.
Publicado: (2021) -
Symmetry-aware recursive image similarity exploration for materials microscopy
por: Tri N. M. Nguyen, et al.
Publicado: (2021) -
Differential programming enabled functional imaging with Lorentz transmission electron microscopy
por: Tao Zhou, et al.
Publicado: (2021) -
Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries
por: Sulin Zhang
Publicado: (2017) -
Rapid and flexible segmentation of electron microscopy data using few-shot machine learning
por: Sarah Akers, et al.
Publicado: (2021)