Urinary metabolic phenotyping for Alzheimer’s disease

Abstract Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive meta...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Natalja Kurbatova, Manik Garg, Luke Whiley, Elena Chekmeneva, Beatriz Jiménez, María Gómez-Romero, Jake Pearce, Torben Kimhofer, Ellie D’Hondt, Hilkka Soininen, Iwona Kłoszewska, Patrizia Mecocci, Magda Tsolaki, Bruno Vellas, Dag Aarsland, Alejo Nevado-Holgado, Benjamine Liu, Stuart Snowden, Petroula Proitsi, Nicholas J. Ashton, Abdul Hye, Cristina Legido-Quigley, Matthew R. Lewis, Jeremy K. Nicholson, Elaine Holmes, Alvis Brazma, Simon Lovestone
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1bd85f619d574055ba7c1fb49956bdea
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1bd85f619d574055ba7c1fb49956bdea
record_format dspace
spelling oai:doaj.org-article:1bd85f619d574055ba7c1fb49956bdea2021-12-02T15:11:50ZUrinary metabolic phenotyping for Alzheimer’s disease10.1038/s41598-020-78031-92045-2322https://doaj.org/article/1bd85f619d574055ba7c1fb49956bdea2020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78031-9https://doaj.org/toc/2045-2322Abstract Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer’s Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer’s Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer’s Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer’s pathology in previous studies.Natalja KurbatovaManik GargLuke WhileyElena ChekmenevaBeatriz JiménezMaría Gómez-RomeroJake PearceTorben KimhoferEllie D’HondtHilkka SoininenIwona KłoszewskaPatrizia MecocciMagda TsolakiBruno VellasDag AarslandAlejo Nevado-HolgadoBenjamine LiuStuart SnowdenPetroula ProitsiNicholas J. AshtonAbdul HyeCristina Legido-QuigleyMatthew R. LewisJeremy K. NicholsonElaine HolmesAlvis BrazmaSimon LovestoneNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-17 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Natalja Kurbatova
Manik Garg
Luke Whiley
Elena Chekmeneva
Beatriz Jiménez
María Gómez-Romero
Jake Pearce
Torben Kimhofer
Ellie D’Hondt
Hilkka Soininen
Iwona Kłoszewska
Patrizia Mecocci
Magda Tsolaki
Bruno Vellas
Dag Aarsland
Alejo Nevado-Holgado
Benjamine Liu
Stuart Snowden
Petroula Proitsi
Nicholas J. Ashton
Abdul Hye
Cristina Legido-Quigley
Matthew R. Lewis
Jeremy K. Nicholson
Elaine Holmes
Alvis Brazma
Simon Lovestone
Urinary metabolic phenotyping for Alzheimer’s disease
description Abstract Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer’s Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer’s Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer’s Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer’s pathology in previous studies.
format article
author Natalja Kurbatova
Manik Garg
Luke Whiley
Elena Chekmeneva
Beatriz Jiménez
María Gómez-Romero
Jake Pearce
Torben Kimhofer
Ellie D’Hondt
Hilkka Soininen
Iwona Kłoszewska
Patrizia Mecocci
Magda Tsolaki
Bruno Vellas
Dag Aarsland
Alejo Nevado-Holgado
Benjamine Liu
Stuart Snowden
Petroula Proitsi
Nicholas J. Ashton
Abdul Hye
Cristina Legido-Quigley
Matthew R. Lewis
Jeremy K. Nicholson
Elaine Holmes
Alvis Brazma
Simon Lovestone
author_facet Natalja Kurbatova
Manik Garg
Luke Whiley
Elena Chekmeneva
Beatriz Jiménez
María Gómez-Romero
Jake Pearce
Torben Kimhofer
Ellie D’Hondt
Hilkka Soininen
Iwona Kłoszewska
Patrizia Mecocci
Magda Tsolaki
Bruno Vellas
Dag Aarsland
Alejo Nevado-Holgado
Benjamine Liu
Stuart Snowden
Petroula Proitsi
Nicholas J. Ashton
Abdul Hye
Cristina Legido-Quigley
Matthew R. Lewis
Jeremy K. Nicholson
Elaine Holmes
Alvis Brazma
Simon Lovestone
author_sort Natalja Kurbatova
title Urinary metabolic phenotyping for Alzheimer’s disease
title_short Urinary metabolic phenotyping for Alzheimer’s disease
title_full Urinary metabolic phenotyping for Alzheimer’s disease
title_fullStr Urinary metabolic phenotyping for Alzheimer’s disease
title_full_unstemmed Urinary metabolic phenotyping for Alzheimer’s disease
title_sort urinary metabolic phenotyping for alzheimer’s disease
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1bd85f619d574055ba7c1fb49956bdea
work_keys_str_mv AT nataljakurbatova urinarymetabolicphenotypingforalzheimersdisease
AT manikgarg urinarymetabolicphenotypingforalzheimersdisease
AT lukewhiley urinarymetabolicphenotypingforalzheimersdisease
AT elenachekmeneva urinarymetabolicphenotypingforalzheimersdisease
AT beatrizjimenez urinarymetabolicphenotypingforalzheimersdisease
AT mariagomezromero urinarymetabolicphenotypingforalzheimersdisease
AT jakepearce urinarymetabolicphenotypingforalzheimersdisease
AT torbenkimhofer urinarymetabolicphenotypingforalzheimersdisease
AT elliedhondt urinarymetabolicphenotypingforalzheimersdisease
AT hilkkasoininen urinarymetabolicphenotypingforalzheimersdisease
AT iwonakłoszewska urinarymetabolicphenotypingforalzheimersdisease
AT patriziamecocci urinarymetabolicphenotypingforalzheimersdisease
AT magdatsolaki urinarymetabolicphenotypingforalzheimersdisease
AT brunovellas urinarymetabolicphenotypingforalzheimersdisease
AT dagaarsland urinarymetabolicphenotypingforalzheimersdisease
AT alejonevadoholgado urinarymetabolicphenotypingforalzheimersdisease
AT benjamineliu urinarymetabolicphenotypingforalzheimersdisease
AT stuartsnowden urinarymetabolicphenotypingforalzheimersdisease
AT petroulaproitsi urinarymetabolicphenotypingforalzheimersdisease
AT nicholasjashton urinarymetabolicphenotypingforalzheimersdisease
AT abdulhye urinarymetabolicphenotypingforalzheimersdisease
AT cristinalegidoquigley urinarymetabolicphenotypingforalzheimersdisease
AT matthewrlewis urinarymetabolicphenotypingforalzheimersdisease
AT jeremyknicholson urinarymetabolicphenotypingforalzheimersdisease
AT elaineholmes urinarymetabolicphenotypingforalzheimersdisease
AT alvisbrazma urinarymetabolicphenotypingforalzheimersdisease
AT simonlovestone urinarymetabolicphenotypingforalzheimersdisease
_version_ 1718387615291408384