Harnessing machine learning to guide phylogenetic-tree search algorithms

Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.

Guardado en:
Detalles Bibliográficos
Autores principales: Dana Azouri, Shiran Abadi, Yishay Mansour, Itay Mayrose, Tal Pupko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.