Harnessing machine learning to guide phylogenetic-tree search algorithms

Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.

Guardado en:
Detalles Bibliográficos
Autores principales: Dana Azouri, Shiran Abadi, Yishay Mansour, Itay Mayrose, Tal Pupko
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1bdcf3cd732e45cb83b0599ce656b10d
record_format dspace
spelling oai:doaj.org-article:1bdcf3cd732e45cb83b0599ce656b10d2021-12-02T14:23:30ZHarnessing machine learning to guide phylogenetic-tree search algorithms10.1038/s41467-021-22073-82041-1723https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22073-8https://doaj.org/toc/2041-1723Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.Dana AzouriShiran AbadiYishay MansourItay MayroseTal PupkoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dana Azouri
Shiran Abadi
Yishay Mansour
Itay Mayrose
Tal Pupko
Harnessing machine learning to guide phylogenetic-tree search algorithms
description Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.
format article
author Dana Azouri
Shiran Abadi
Yishay Mansour
Itay Mayrose
Tal Pupko
author_facet Dana Azouri
Shiran Abadi
Yishay Mansour
Itay Mayrose
Tal Pupko
author_sort Dana Azouri
title Harnessing machine learning to guide phylogenetic-tree search algorithms
title_short Harnessing machine learning to guide phylogenetic-tree search algorithms
title_full Harnessing machine learning to guide phylogenetic-tree search algorithms
title_fullStr Harnessing machine learning to guide phylogenetic-tree search algorithms
title_full_unstemmed Harnessing machine learning to guide phylogenetic-tree search algorithms
title_sort harnessing machine learning to guide phylogenetic-tree search algorithms
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d
work_keys_str_mv AT danaazouri harnessingmachinelearningtoguidephylogenetictreesearchalgorithms
AT shiranabadi harnessingmachinelearningtoguidephylogenetictreesearchalgorithms
AT yishaymansour harnessingmachinelearningtoguidephylogenetictreesearchalgorithms
AT itaymayrose harnessingmachinelearningtoguidephylogenetictreesearchalgorithms
AT talpupko harnessingmachinelearningtoguidephylogenetictreesearchalgorithms
_version_ 1718391413136162816