Harnessing machine learning to guide phylogenetic-tree search algorithms
Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1bdcf3cd732e45cb83b0599ce656b10d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1bdcf3cd732e45cb83b0599ce656b10d2021-12-02T14:23:30ZHarnessing machine learning to guide phylogenetic-tree search algorithms10.1038/s41467-021-22073-82041-1723https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-22073-8https://doaj.org/toc/2041-1723Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.Dana AzouriShiran AbadiYishay MansourItay MayroseTal PupkoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Dana Azouri Shiran Abadi Yishay Mansour Itay Mayrose Tal Pupko Harnessing machine learning to guide phylogenetic-tree search algorithms |
description |
Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference. |
format |
article |
author |
Dana Azouri Shiran Abadi Yishay Mansour Itay Mayrose Tal Pupko |
author_facet |
Dana Azouri Shiran Abadi Yishay Mansour Itay Mayrose Tal Pupko |
author_sort |
Dana Azouri |
title |
Harnessing machine learning to guide phylogenetic-tree search algorithms |
title_short |
Harnessing machine learning to guide phylogenetic-tree search algorithms |
title_full |
Harnessing machine learning to guide phylogenetic-tree search algorithms |
title_fullStr |
Harnessing machine learning to guide phylogenetic-tree search algorithms |
title_full_unstemmed |
Harnessing machine learning to guide phylogenetic-tree search algorithms |
title_sort |
harnessing machine learning to guide phylogenetic-tree search algorithms |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d |
work_keys_str_mv |
AT danaazouri harnessingmachinelearningtoguidephylogenetictreesearchalgorithms AT shiranabadi harnessingmachinelearningtoguidephylogenetictreesearchalgorithms AT yishaymansour harnessingmachinelearningtoguidephylogenetictreesearchalgorithms AT itaymayrose harnessingmachinelearningtoguidephylogenetictreesearchalgorithms AT talpupko harnessingmachinelearningtoguidephylogenetictreesearchalgorithms |
_version_ |
1718391413136162816 |