Harnessing machine learning to guide phylogenetic-tree search algorithms
Likelihood optimization in phylogenetic tree reconstruction is computationally intensive, especially as the number of sequences and taxa included increase. Here, Azouri et al. show how an artificial intelligence approach can reduce computational time without losing accuracy of tree inference.
Guardado en:
Autores principales: | Dana Azouri, Shiran Abadi, Yishay Mansour, Itay Mayrose, Tal Pupko |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1bdcf3cd732e45cb83b0599ce656b10d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Model selection may not be a mandatory step for phylogeny reconstruction
por: Shiran Abadi, et al.
Publicado: (2019) -
Harnessing Machine Learning To Unravel Protein Degradation in <named-content content-type="genus-species">Escherichia coli</named-content>
por: Natan Nagar, et al.
Publicado: (2021) -
Broad phylogenetic analysis of cation/proton antiporters reveals transport determinants
por: Gal Masrati, et al.
Publicado: (2018) -
Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning
por: Prasanna V. Balachandran, et al.
Publicado: (2018) -
Genome-scale identification of Legionella pneumophila effectors using a machine learning approach.
por: David Burstein, et al.
Publicado: (2009)