A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1be0aefe11034fad8a85057c8b048b54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1be0aefe11034fad8a85057c8b048b54 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1be0aefe11034fad8a85057c8b048b542021-12-02T19:02:36ZA clustering-independent method for finding differentially expressed genes in single-cell transcriptome data10.1038/s41467-020-17900-32041-1723https://doaj.org/article/1be0aefe11034fad8a85057c8b048b542020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17900-3https://doaj.org/toc/2041-1723How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying on explicit clustering of cells.Alexis VandenbonDiego DiezNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Alexis Vandenbon Diego Diez A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
description |
How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying on explicit clustering of cells. |
format |
article |
author |
Alexis Vandenbon Diego Diez |
author_facet |
Alexis Vandenbon Diego Diez |
author_sort |
Alexis Vandenbon |
title |
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
title_short |
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
title_full |
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
title_fullStr |
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
title_full_unstemmed |
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
title_sort |
clustering-independent method for finding differentially expressed genes in single-cell transcriptome data |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/1be0aefe11034fad8a85057c8b048b54 |
work_keys_str_mv |
AT alexisvandenbon aclusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata AT diegodiez aclusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata AT alexisvandenbon clusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata AT diegodiez clusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata |
_version_ |
1718377194249519104 |