A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data

How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alexis Vandenbon, Diego Diez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/1be0aefe11034fad8a85057c8b048b54
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1be0aefe11034fad8a85057c8b048b54
record_format dspace
spelling oai:doaj.org-article:1be0aefe11034fad8a85057c8b048b542021-12-02T19:02:36ZA clustering-independent method for finding differentially expressed genes in single-cell transcriptome data10.1038/s41467-020-17900-32041-1723https://doaj.org/article/1be0aefe11034fad8a85057c8b048b542020-08-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17900-3https://doaj.org/toc/2041-1723How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying on explicit clustering of cells.Alexis VandenbonDiego DiezNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Alexis Vandenbon
Diego Diez
A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
description How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying on explicit clustering of cells.
format article
author Alexis Vandenbon
Diego Diez
author_facet Alexis Vandenbon
Diego Diez
author_sort Alexis Vandenbon
title A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
title_short A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
title_full A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
title_fullStr A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
title_full_unstemmed A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
title_sort clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1be0aefe11034fad8a85057c8b048b54
work_keys_str_mv AT alexisvandenbon aclusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata
AT diegodiez aclusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata
AT alexisvandenbon clusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata
AT diegodiez clusteringindependentmethodforfindingdifferentiallyexpressedgenesinsinglecelltranscriptomedata
_version_ 1718377194249519104