A clustering-independent method for finding differentially expressed genes in single-cell transcriptome data
How cell clusters are defined in single-cell sequencing data has important consequences for downstream analyses and the interpretation of results, but is often not straightforward. Here, the authors present a new approach that enables the prediction of differentially expressed genes without relying...
Guardado en:
Autores principales: | Alexis Vandenbon, Diego Diez |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1be0aefe11034fad8a85057c8b048b54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A set of structural features defines the cis-regulatory modules of antenna-expressed genes in Drosophila melanogaster.
por: Yosvany López, et al.
Publicado: (2014) -
Enhanced differential expression statistics for data-independent acquisition proteomics
por: Tomi Suomi, et al.
Publicado: (2017) -
Inference of differentiation time for single cell transcriptomes using cell population reference data
por: Na Sun, et al.
Publicado: (2017) -
A Bayesian mixture model for clustering droplet-based single-cell transcriptomic data from population studies
por: Zhe Sun, et al.
Publicado: (2019) -
Trajectory-based differential expression analysis for single-cell sequencing data
por: Koen Van den Berge, et al.
Publicado: (2020)