Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema

Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel funct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nicholas A. Mecholsky, Sepideh Akhbarifar, Werner Lutze, Marek Brandys, Ian L. Pegg
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
GCF
Acceso en línea:https://doaj.org/article/1be162d529b045b88c64ce8da4862c38
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1be162d529b045b88c64ce8da4862c38
record_format dspace
spelling oai:doaj.org-article:1be162d529b045b88c64ce8da4862c382021-11-06T04:30:23ZDataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema2352-340910.1016/j.dib.2021.107508https://doaj.org/article/1be162d529b045b88c64ce8da4862c382021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2352340921007782https://doaj.org/toc/2352-3409Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.Nicholas A. MecholskySepideh AkhbarifarWerner LutzeMarek BrandysIan L. PeggElsevierarticleBessel functionsGCFExtremaMinimumMaximumComputer applications to medicine. Medical informaticsR858-859.7Science (General)Q1-390ENData in Brief, Vol 39, Iss , Pp 107508- (2021)
institution DOAJ
collection DOAJ
language EN
topic Bessel functions
GCF
Extrema
Minimum
Maximum
Computer applications to medicine. Medical informatics
R858-859.7
Science (General)
Q1-390
spellingShingle Bessel functions
GCF
Extrema
Minimum
Maximum
Computer applications to medicine. Medical informatics
R858-859.7
Science (General)
Q1-390
Nicholas A. Mecholsky
Sepideh Akhbarifar
Werner Lutze
Marek Brandys
Ian L. Pegg
Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
description Bessel functions of the first kind are ubiquitous in the sciences and engineering in solutions to cylindrical problems including electrostatics, heat flow, and the Schrödinger equation. The roots of the Bessel functions are often quoted and calculated, but the maxima and minima for each Bessel function, used to match Neumann boundary conditions, have not had the same treatment. Here we compute 10000 extrema for the first 600 orders of the Bessel function J. To do this, we employ an adaptive root solver bounded by the roots of the Bessel function and solve to an accuracy of 10−19. We compare with the existing literature (to 30 orders and 5 maxima and minima) and the results match exactly. It is hoped that these data provide values needed for orthogonal function expansions and numerical expressions including the calculation of geometric correction factors in the measurement of resistivity of materials, as is done in the original paper using these data.
format article
author Nicholas A. Mecholsky
Sepideh Akhbarifar
Werner Lutze
Marek Brandys
Ian L. Pegg
author_facet Nicholas A. Mecholsky
Sepideh Akhbarifar
Werner Lutze
Marek Brandys
Ian L. Pegg
author_sort Nicholas A. Mecholsky
title Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
title_short Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
title_full Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
title_fullStr Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
title_full_unstemmed Dataset of Bessel function Jn maxima and minima to 600 orders and 10000 extrema
title_sort dataset of bessel function jn maxima and minima to 600 orders and 10000 extrema
publisher Elsevier
publishDate 2021
url https://doaj.org/article/1be162d529b045b88c64ce8da4862c38
work_keys_str_mv AT nicholasamecholsky datasetofbesselfunctionjnmaximaandminimato600ordersand10000extrema
AT sepidehakhbarifar datasetofbesselfunctionjnmaximaandminimato600ordersand10000extrema
AT wernerlutze datasetofbesselfunctionjnmaximaandminimato600ordersand10000extrema
AT marekbrandys datasetofbesselfunctionjnmaximaandminimato600ordersand10000extrema
AT ianlpegg datasetofbesselfunctionjnmaximaandminimato600ordersand10000extrema
_version_ 1718443838811406336