The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface

Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Iftikhar Uddin, Ikram Ullah, Muhammad Asif Zahoor Raja, Muhammad Shoaib, Saeed Islam, M. S. Zobaer, K. S. Nisar, C. Ahamed Saleel, Saad Alshahrani
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf51529
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1bfa1dfa6fdf48a28268fab8faf51529
record_format dspace
spelling oai:doaj.org-article:1bfa1dfa6fdf48a28268fab8faf515292021-12-02T18:51:15ZThe intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface10.1038/s41598-021-97458-22045-2322https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf515292021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97458-2https://doaj.org/toc/2045-2322Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (TFFMFTDECR) over a horizontal rotating disk. The expression for thermophoretic velocity is accounted. Energy expression is deliberated with the addition of non-uniform heat source. The PDEs of mathematical model of TFFMFTDECR are transformed to ODEs by the application of similarity transformations. A dataset is generated through Adams method for the proposed NNs-BLMS in case of various scenarios of TFFMFTDECR model by variation of rotation parameter, magnetic parameter, space dependent heat sink/source parameter, temperature dependent heat sink/source parameter and chemical reaction controlling parameter. The designed computational solver NNs-BLMS is implemented by performing training, testing and validation for the solution of TFFMFTDECR system for different variants. Variation of various physical parameters are designed via plots and explain in details. It is depicted that thin film thickness increases for higher values of disk rotation parameter, while it diminishes for higher magnetic parameter. Furthermore, higher values of Dufour number and the corresponding diminishing values of Soret number causes enhancement in fluid temperature profile. Further the effectiveness of NNs-BLMS is validated by comparing the results of the proposed solver and the standard solution of TFFMFTDECR model through error analyses, histogram representations and regression analyses.Iftikhar UddinIkram UllahMuhammad Asif Zahoor RajaMuhammad ShoaibSaeed IslamM. S. ZobaerK. S. NisarC. Ahamed SaleelSaad AlshahraniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Iftikhar Uddin
Ikram Ullah
Muhammad Asif Zahoor Raja
Muhammad Shoaib
Saeed Islam
M. S. Zobaer
K. S. Nisar
C. Ahamed Saleel
Saad Alshahrani
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
description Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (TFFMFTDECR) over a horizontal rotating disk. The expression for thermophoretic velocity is accounted. Energy expression is deliberated with the addition of non-uniform heat source. The PDEs of mathematical model of TFFMFTDECR are transformed to ODEs by the application of similarity transformations. A dataset is generated through Adams method for the proposed NNs-BLMS in case of various scenarios of TFFMFTDECR model by variation of rotation parameter, magnetic parameter, space dependent heat sink/source parameter, temperature dependent heat sink/source parameter and chemical reaction controlling parameter. The designed computational solver NNs-BLMS is implemented by performing training, testing and validation for the solution of TFFMFTDECR system for different variants. Variation of various physical parameters are designed via plots and explain in details. It is depicted that thin film thickness increases for higher values of disk rotation parameter, while it diminishes for higher magnetic parameter. Furthermore, higher values of Dufour number and the corresponding diminishing values of Soret number causes enhancement in fluid temperature profile. Further the effectiveness of NNs-BLMS is validated by comparing the results of the proposed solver and the standard solution of TFFMFTDECR model through error analyses, histogram representations and regression analyses.
format article
author Iftikhar Uddin
Ikram Ullah
Muhammad Asif Zahoor Raja
Muhammad Shoaib
Saeed Islam
M. S. Zobaer
K. S. Nisar
C. Ahamed Saleel
Saad Alshahrani
author_facet Iftikhar Uddin
Ikram Ullah
Muhammad Asif Zahoor Raja
Muhammad Shoaib
Saeed Islam
M. S. Zobaer
K. S. Nisar
C. Ahamed Saleel
Saad Alshahrani
author_sort Iftikhar Uddin
title The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
title_short The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
title_full The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
title_fullStr The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
title_full_unstemmed The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
title_sort intelligent networks for double-diffusion and mhd analysis of thin film flow over a stretched surface
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf51529
work_keys_str_mv AT iftikharuddin theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT ikramullah theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT muhammadasifzahoorraja theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT muhammadshoaib theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT saeedislam theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT mszobaer theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT ksnisar theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT cahamedsaleel theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT saadalshahrani theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT iftikharuddin intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT ikramullah intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT muhammadasifzahoorraja intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT muhammadshoaib intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT saeedislam intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT mszobaer intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT ksnisar intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT cahamedsaleel intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
AT saadalshahrani intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface
_version_ 1718377432318214144