The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface
Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf51529 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1bfa1dfa6fdf48a28268fab8faf51529 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1bfa1dfa6fdf48a28268fab8faf515292021-12-02T18:51:15ZThe intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface10.1038/s41598-021-97458-22045-2322https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf515292021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97458-2https://doaj.org/toc/2045-2322Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (TFFMFTDECR) over a horizontal rotating disk. The expression for thermophoretic velocity is accounted. Energy expression is deliberated with the addition of non-uniform heat source. The PDEs of mathematical model of TFFMFTDECR are transformed to ODEs by the application of similarity transformations. A dataset is generated through Adams method for the proposed NNs-BLMS in case of various scenarios of TFFMFTDECR model by variation of rotation parameter, magnetic parameter, space dependent heat sink/source parameter, temperature dependent heat sink/source parameter and chemical reaction controlling parameter. The designed computational solver NNs-BLMS is implemented by performing training, testing and validation for the solution of TFFMFTDECR system for different variants. Variation of various physical parameters are designed via plots and explain in details. It is depicted that thin film thickness increases for higher values of disk rotation parameter, while it diminishes for higher magnetic parameter. Furthermore, higher values of Dufour number and the corresponding diminishing values of Soret number causes enhancement in fluid temperature profile. Further the effectiveness of NNs-BLMS is validated by comparing the results of the proposed solver and the standard solution of TFFMFTDECR model through error analyses, histogram representations and regression analyses.Iftikhar UddinIkram UllahMuhammad Asif Zahoor RajaMuhammad ShoaibSaeed IslamM. S. ZobaerK. S. NisarC. Ahamed SaleelSaad AlshahraniNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-20 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Iftikhar Uddin Ikram Ullah Muhammad Asif Zahoor Raja Muhammad Shoaib Saeed Islam M. S. Zobaer K. S. Nisar C. Ahamed Saleel Saad Alshahrani The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
description |
Abstract This study presents a novel application of soft-computing through intelligent, neural networks backpropagated by Levenberg–Marquardt scheme (NNs-BLMS) to solve the mathematical model of unsteady thin film flow of magnetized Maxwell fluid with thermo-diffusion effects and chemical reaction (TFFMFTDECR) over a horizontal rotating disk. The expression for thermophoretic velocity is accounted. Energy expression is deliberated with the addition of non-uniform heat source. The PDEs of mathematical model of TFFMFTDECR are transformed to ODEs by the application of similarity transformations. A dataset is generated through Adams method for the proposed NNs-BLMS in case of various scenarios of TFFMFTDECR model by variation of rotation parameter, magnetic parameter, space dependent heat sink/source parameter, temperature dependent heat sink/source parameter and chemical reaction controlling parameter. The designed computational solver NNs-BLMS is implemented by performing training, testing and validation for the solution of TFFMFTDECR system for different variants. Variation of various physical parameters are designed via plots and explain in details. It is depicted that thin film thickness increases for higher values of disk rotation parameter, while it diminishes for higher magnetic parameter. Furthermore, higher values of Dufour number and the corresponding diminishing values of Soret number causes enhancement in fluid temperature profile. Further the effectiveness of NNs-BLMS is validated by comparing the results of the proposed solver and the standard solution of TFFMFTDECR model through error analyses, histogram representations and regression analyses. |
format |
article |
author |
Iftikhar Uddin Ikram Ullah Muhammad Asif Zahoor Raja Muhammad Shoaib Saeed Islam M. S. Zobaer K. S. Nisar C. Ahamed Saleel Saad Alshahrani |
author_facet |
Iftikhar Uddin Ikram Ullah Muhammad Asif Zahoor Raja Muhammad Shoaib Saeed Islam M. S. Zobaer K. S. Nisar C. Ahamed Saleel Saad Alshahrani |
author_sort |
Iftikhar Uddin |
title |
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
title_short |
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
title_full |
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
title_fullStr |
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
title_full_unstemmed |
The intelligent networks for double-diffusion and MHD analysis of thin film flow over a stretched surface |
title_sort |
intelligent networks for double-diffusion and mhd analysis of thin film flow over a stretched surface |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1bfa1dfa6fdf48a28268fab8faf51529 |
work_keys_str_mv |
AT iftikharuddin theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT ikramullah theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT muhammadasifzahoorraja theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT muhammadshoaib theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT saeedislam theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT mszobaer theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT ksnisar theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT cahamedsaleel theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT saadalshahrani theintelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT iftikharuddin intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT ikramullah intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT muhammadasifzahoorraja intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT muhammadshoaib intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT saeedislam intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT mszobaer intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT ksnisar intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT cahamedsaleel intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface AT saadalshahrani intelligentnetworksfordoublediffusionandmhdanalysisofthinfilmflowoverastretchedsurface |
_version_ |
1718377432318214144 |