Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy

Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to fi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Kruglov, Vladislav Evgenievich, Pochinka, Olga Vitalievna
Formato: article
Lenguaje:EN
RU
Publicado: Saratov State University 2021
Materias:
Acceso en línea:https://doaj.org/article/1bfbda1f019c448fba2d121e1249c303
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1bfbda1f019c448fba2d121e1249c303
record_format dspace
spelling oai:doaj.org-article:1bfbda1f019c448fba2d121e1249c3032021-11-30T10:43:56ZClassification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy0869-66322542-190510.18500/0869-6632-2021-29-6-835-850https://doaj.org/article/1bfbda1f019c448fba2d121e1249c3032021-11-01T00:00:00Zhttps://andjournal.sgu.ru/sites/andjournal.sgu.ru/files/text-pdf/2021/11/kruglov-pochinka_835-850.pdfhttps://doaj.org/toc/0869-6632https://doaj.org/toc/2542-1905Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another. Kruglov, Vladislav EvgenievichPochinka, Olga VitalievnaSaratov State Universityarticlemorse – smale flowmoduli of stabilityequipped graphtopological classificationPhysicsQC1-999ENRUИзвестия высших учебных заведений: Прикладная нелинейная динамика, Vol 29, Iss 6, Pp 835-850 (2021)
institution DOAJ
collection DOAJ
language EN
RU
topic morse – smale flow
moduli of stability
equipped graph
topological classification
Physics
QC1-999
spellingShingle morse – smale flow
moduli of stability
equipped graph
topological classification
Physics
QC1-999
Kruglov, Vladislav Evgenievich
Pochinka, Olga Vitalievna
Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
description Purpose. The purpose of this study is to consider the class of Morse – Smale flows on surfaces, to characterize its subclass consisting of flows with a finite number of moduli of stability, and to obtain a topological classification of such flows up to topological conjugacy, that is, to find an invariant that shows that there exists a homeomorphism that transfers the trajectories of one flow to the trajectories of another while preserving the direction of movement and the time of movement along the trajectories; for the obtained invariant, to construct a polynomial algorithm for recognizing its isomorphism and to construct the realisation of the invariant by a standard flow on the surface. Methods. Methods for finding moduli of topological conjugacy go back to the classical works of J. Palis, W. di Melo and use smooth flow lianerization in a neighborhood of equilibrium states and limit cycles. For the classification of flows, the traditional methods of dividing the phase surface into regions with the same behavior of trajectories are used, which are a modification of the methods of A. A. Andronov, E. A. Leontovich, and A. G. Mayer. Results. It is shown that a Morse – Smale flow on a surface has a finite number of moduli if and only if it does not have a trajectory going from one limit cycle to another. For a subclass of Morse – Smale flows with a finite number of moduli, a classification is done up to topological conjugacy by means of an equipped graph. Conclusion. The criterion for the finiteness of the number of moduli of Morse – Smale flows on surfaces is obtained. A topological invariant is constructed that describes the topological conjugacy class of a Morse – Smale flow on a surface with a finite number of modules, that is, without trajectories going from one limit cycle to another. 
format article
author Kruglov, Vladislav Evgenievich
Pochinka, Olga Vitalievna
author_facet Kruglov, Vladislav Evgenievich
Pochinka, Olga Vitalievna
author_sort Kruglov, Vladislav Evgenievich
title Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
title_short Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
title_full Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
title_fullStr Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
title_full_unstemmed Classification of the Morse – Smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
title_sort classification of the morse – smale flows on surfaces with a finite moduli of stability number in sense of topological conjugacy
publisher Saratov State University
publishDate 2021
url https://doaj.org/article/1bfbda1f019c448fba2d121e1249c303
work_keys_str_mv AT kruglovvladislavevgenievich classificationofthemorsesmaleflowsonsurfaceswithafinitemoduliofstabilitynumberinsenseoftopologicalconjugacy
AT pochinkaolgavitalievna classificationofthemorsesmaleflowsonsurfaceswithafinitemoduliofstabilitynumberinsenseoftopologicalconjugacy
_version_ 1718406669973585920