The impact of human mobility data scales and processing on movement predictability
Abstract Predictability of human movement is a theoretical upper bound for the accuracy of movement prediction models, which serves as a reference value showing how regular a dataset is and to what extent mobility can be predicted. Over the years, the predictability of various human mobility dataset...
Guardado en:
Autores principales: | Kamil Smolak, Katarzyna Siła-Nowicka, Jean-Charles Delvenne, Michał Wierzbiński, Witold Rohm |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c0ae3b6ff9842388c89a1e4f9dddd01 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Forest disturbance and arthropods: small‐scale canopy and understory disturbances alter movement of mobile arthropods
por: Kayla I. Perry, et al.
Publicado: (2021) -
How to Effectively Collect and Process Network Data for Intrusion Detection?
por: Mikołaj Komisarek, et al.
Publicado: (2021) -
Exploring App-Based Taxi Movement Patterns from Large-Scale Geolocation Data
por: Wenbo Zhang, et al.
Publicado: (2021) -
Spatial Prediction of Agrochemical Properties on the Scale of a Single Field Using Machine Learning Methods Based on Remote Sensing Data
por: Ilnas Sahabiev, et al.
Publicado: (2021) -
Prediction of Hospital Readmission from Longitudinal Mobile Data Streams
por: Chen Qian, et al.
Publicado: (2021)