Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques
Abstract Background Antimicrobial peptides are promising tools to fight against ever-growing antibiotic resistance. However, despite many advantages, their toxicity to mammalian cells is a critical obstacle in clinical application and needs to be addressed. Results In this study, by using an up-to-d...
Guardado en:
Autores principales: | Hossein Khabbaz, Mohammad Hossein Karimi-Jafari, Ali Akbar Saboury, Bagher BabaAli |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c0cb3e61e1b44b4b78f6a7e30f8888e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data on the genome of Bacillus subtilis A1- Midalam from beach soil
por: Sneha Pramod, et al.
Publicado: (2021) -
Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review
por: Bruna Costa, et al.
Publicado: (2021) -
INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS
por: E. S. Umnyakova, et al.
Publicado: (2016) -
Predicting COVID-19 mortality with electronic medical records
por: Hossein Estiri, et al.
Publicado: (2021) -
Digital public health surveillance: a systematic scoping review
por: Zahra Shakeri Hossein Abad, et al.
Publicado: (2021)