Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress
Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c1708d2de1c4fef8a2682fd526c9b71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1c1708d2de1c4fef8a2682fd526c9b71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1c1708d2de1c4fef8a2682fd526c9b712021-12-02T04:28:18ZPorous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress1178-2013https://doaj.org/article/1c1708d2de1c4fef8a2682fd526c9b712017-09-01T00:00:00Zhttps://www.dovepress.com/porous-sesio2-nanospheres-treated-paraquat-induced-acute-lung-injury-b-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning. Keywords: porous Se@SiO2 nanospheres, acute lung injury, paraquat poisoning, oxidative stress, inflammatory cytokines, ROS, NF-kappa BZhu YDeng GJi AYao JMeng XWang JWang QWang QWang RDove Medical Pressarticleporous Se@SiO2 nanospheresacute lung injuryparaquat poisoningoxidative stressinflammatory cytokinesMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 12, Pp 7143-7152 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
porous Se@SiO2 nanospheres acute lung injury paraquat poisoning oxidative stress inflammatory cytokines Medicine (General) R5-920 |
spellingShingle |
porous Se@SiO2 nanospheres acute lung injury paraquat poisoning oxidative stress inflammatory cytokines Medicine (General) R5-920 Zhu Y Deng G Ji A Yao J Meng X Wang J Wang Q Wang Q Wang R Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
description |
Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning. Keywords: porous Se@SiO2 nanospheres, acute lung injury, paraquat poisoning, oxidative stress, inflammatory cytokines, ROS, NF-kappa B |
format |
article |
author |
Zhu Y Deng G Ji A Yao J Meng X Wang J Wang Q Wang Q Wang R |
author_facet |
Zhu Y Deng G Ji A Yao J Meng X Wang J Wang Q Wang Q Wang R |
author_sort |
Zhu Y |
title |
Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
title_short |
Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
title_full |
Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
title_fullStr |
Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
title_full_unstemmed |
Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
title_sort |
porous se@sio2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress |
publisher |
Dove Medical Press |
publishDate |
2017 |
url |
https://doaj.org/article/1c1708d2de1c4fef8a2682fd526c9b71 |
work_keys_str_mv |
AT zhuy poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT dengg poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT jia poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT yaoj poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT mengx poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT wangj poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT wangq poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT wangq poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress AT wangr poroussesio2nanospherestreatedparaquatinducedacutelunginjurybyresistingoxidativestress |
_version_ |
1718401171720241152 |