A Pruning Optimized Fast Learn++NSE Algorithm
Due to the large number of typical applications, it is very important and urgent to study the fast classification learning of accumulated big data in nonstationary environments. The newly proposed algorithm, named Learn++.NSE, is one of the important research results in this re...
Guardado en:
Autores principales: | Yong Chen, Yuquan Zhu, Haifeng Chen, Yan Shen, Zhao Xu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c215702f04b4da3bee54d80c7183377 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Picking Path Optimization of Mobile Robotic Arm Based on Differential Evolution and Improved A* Algorithm
por: Liang Chen, et al.
Publicado: (2021) -
Investigation of Er<sup>3+</sup>-Doped Phosphate Glass for L+ Band Optical Amplification
por: Xiao Shen, et al.
Publicado: (2021) -
<italic>B</italic>+-Tree Based Multi-Keyword Ranked Similarity Search Scheme Over Encrypted Cloud Data
por: Huanglin Shen, et al.
Publicado: (2021) -
A Backtracking Ensemble Pruning Based Reconfiguration Method for Time-Triggered Flows in TTEthernet
por: Ji Li, et al.
Publicado: (2021) -
Comparing DMSP/OLS Stable Nighttime Light With Radiance Calibrated Nighttime Light
por: Zhe Tong, et al.
Publicado: (2021)