Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
Abstract Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low v...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1c283f93bd5f4101bb799f12bc7956e8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1c283f93bd5f4101bb799f12bc7956e8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1c283f93bd5f4101bb799f12bc7956e82021-11-08T10:53:24ZImpact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features10.1038/s41598-021-00898-z2045-2322https://doaj.org/article/1c283f93bd5f4101bb799f12bc7956e82021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-00898-zhttps://doaj.org/toc/2045-2322Abstract Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low voxel statistics in regions of interest, increasing the sample size would improve their robustness in clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At $$2\times $$ 2 × SR, the proposed model achieved better perceptual quality with less blurring than the other considered state-of-the-art SR methods, while producing comparable results at $$4\times $$ 4 × SR. We also evaluated the robustness of our model’s radiomic feature in terms of quantization on a different lung cancer CT dataset using Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-based analysis were the most robust features extracted on the GAN-super-resolved images. These achievements pave the way for the application of GAN-based image Super-Resolution techniques for studies of radiomics for robust biomarker discovery.Erick Costa de FariasChristian di NoiaChanghee HanEvis SalaMauro CastelliLeonardo RundoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Erick Costa de Farias Christian di Noia Changhee Han Evis Sala Mauro Castelli Leonardo Rundo Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
description |
Abstract Robust machine learning models based on radiomic features might allow for accurate diagnosis, prognosis, and medical decision-making. Unfortunately, the lack of standardized radiomic feature extraction has hampered their clinical use. Since the radiomic features tend to be affected by low voxel statistics in regions of interest, increasing the sample size would improve their robustness in clinical studies. Therefore, we propose a Generative Adversarial Network (GAN)-based lesion-focused framework for Computed Tomography (CT) image Super-Resolution (SR); for the lesion (i.e., cancer) patch-focused training, we incorporate Spatial Pyramid Pooling (SPP) into GAN-Constrained by the Identical, Residual, and Cycle Learning Ensemble (GAN-CIRCLE). At $$2\times $$ 2 × SR, the proposed model achieved better perceptual quality with less blurring than the other considered state-of-the-art SR methods, while producing comparable results at $$4\times $$ 4 × SR. We also evaluated the robustness of our model’s radiomic feature in terms of quantization on a different lung cancer CT dataset using Principal Component Analysis (PCA). Intriguingly, the most important radiomic features in our PCA-based analysis were the most robust features extracted on the GAN-super-resolved images. These achievements pave the way for the application of GAN-based image Super-Resolution techniques for studies of radiomics for robust biomarker discovery. |
format |
article |
author |
Erick Costa de Farias Christian di Noia Changhee Han Evis Sala Mauro Castelli Leonardo Rundo |
author_facet |
Erick Costa de Farias Christian di Noia Changhee Han Evis Sala Mauro Castelli Leonardo Rundo |
author_sort |
Erick Costa de Farias |
title |
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
title_short |
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
title_full |
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
title_fullStr |
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
title_full_unstemmed |
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features |
title_sort |
impact of gan-based lesion-focused medical image super-resolution on the robustness of radiomic features |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1c283f93bd5f4101bb799f12bc7956e8 |
work_keys_str_mv |
AT erickcostadefarias impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures AT christiandinoia impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures AT changheehan impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures AT evissala impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures AT maurocastelli impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures AT leonardorundo impactofganbasedlesionfocusedmedicalimagesuperresolutionontherobustnessofradiomicfeatures |
_version_ |
1718442501387321344 |